
Approximating the Value of a Definite Integral

There are many ways to approximate the value of the integral
∫

b

a
f(x) dx

with a and b finite. We will use a simple approach. Subdivide the
interval [a, b] into a large number of subintervals of the same length.
On each subinterval, approximate the integrand f(x) by a function s(x)
which is so simple that we can explicitly evaluate its integral over the
subinterval. The value of this integral is used as the approximation to
the original integral over the subinterval. An approximation to the value
of the integral over the entire interval [a, b] is obtained by summing the
approximations over all the subintervals.

To implement this idea, we first select a set of points {x0, x1, ..., xN} in
the interval [a, b]. We require x0 = a, xN = b and the points xn to be
equally spaced. Set ∆x = xn+1−xn which is the same positive constant
for each subinterval. The set of points {x0, x1, ..., xN} is called a uniform
partition of the interval [a, b] with step size ∆x. Next, we approximate
the value of

∫

f(x) dx over the subinterval [xn, xn+1] by a number In.
The number In is computed by integrating the approximating function
s(x) over the subinterval. The choice of s(x) on the subinterval [xn, xn+1]

will be described below. The approximation to
∫

b

a
f(x) dx is obtained by

summing all the numbers In, 0 ≤ n ≤ N − 1.

Before we can actually compute an approximate value for an integral,
we must explain how the approximating function s(x) is to be chosen.
The choice of s(x) is dictated by the accuracy we want and how much
work we are willing to do. To keep matters simple, we will assume that
all computer calculations are exact and that there will always be enough
computer memory available. For now, we will choose the simple, ap-
proximating functions s(x) to be constant functions. The constant value
used to approximate the integrand f(x) over the subinterval [xn, xn+1]
will be either f(xn) or f(xn+1). Setting s(x) = f(xn) on the subinterval
[xn, xn+1], we see

∫

xn+1

xn

f(x) dx ≈

∫

xn+1

xn

f(xn) dx = f(xn)(xn+1 − xn) = f(xn)∆xn

1



so In = f(xn)∆xn.

Now,
∫

b

a

f(x) dx =
N−1
∑

n=0

∫

xn+1

xn

f(x) dx ≈
N−1
∑

n=0

f(xn)∆x

which is called the left sum approximation to
∫

b

a
f(x) dx and is denoted

LS. Setting s(x) = f(xn+1) on the subinterval [xn, xn+1] gives

∫

xn+1

xn

f(x) dx ≈

∫

xn+1

xn

f(xn+1) dx = f(xn+1) = In

now. Thus,

∫

b

a

f(x) dx =

N−1
∑

n=0

∫

xn+1

xn

f(x) dx ≈

N−1
∑

n=0

f(xn+1)∆x

which is called the right sum approximation to
∫

b

a
f(x) dx and is de-

noted RS. Changing the index of summation shows that the right sum
approximation can also be written as

N
∑

n=1

f(xn)∆x

We always evaluate f(x) at the left end of each subinterval or at the
right end of each subinterval; we never mix the two.

Having defined the left and right sum approximations, we now have
to estimate the error committed in using these approximations. Such
estimates are important because they tell us how many subdivisions we
must use to ensure a specified accuracy.

Monotone Functions
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For concreteness, we assume f(x) is nondecreasing on the interval [a, b].
Since f(x) must be nondecreasing on each subinterval [xn, xn+1], we have

f(xn) ≤ f(x) ≤ f(xn+1)

so

f(xn)∆x ≤

∫

xn+1

xn

f(x) dx ≤ f(xn+1)∆x

Summing over n, we get

LS =

N−1
∑

n=0

f(xn)∆x ≤

∫

b

a

f(x) dx ≤

N−1
∑

n=0

f(xn+1)∆x = RS

Thus, the left sum is a lower bound on the actual value of the integral
and the right sum is an upper bound. To derive an error estimate, we
look at the difference between LS and RS. Since all inequalities are
reversed for nonincreasing functions, we use absolute values.

0 ≤ |LS − RS| =

∣

∣

∣

∣

∣

N−1
∑

n=0

f(xn)∆x −
N−1
∑

n=0

f(xn+1)∆x

∣

∣

∣

∣

∣

= |(f(a) − f(b))∆x| =
|f(b) − f(a)| · |b − a|

N

Since the actual value of the integral lies between LS and RS, the error

committed in using either sum as an approximation to
∫

b

a
f(x) dx cannot

exceed |LS − RS|. Thus,

∣

∣

∣

∣

∫

b

a

f(x) dx − {LS, RS}

∣

∣

∣

∣

≤
|f(b) − f(a)| · |b − a|

N

which is an error estimate for left sum and right sum approximations to
∫

b

a
f(x) dx when the function f(x) is monotone on [a, b]. To ensure that

the error does not exceed a specified level tol, we require

|f(b) − f(a)| · |b − a|

N
≤ tol
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or

N ≥
|f(b) − f(a)| · |b − a|

tol
(f(x) monotone)

If we use at least this many subdivisions, we can be sure that the left

and right sum approximations to
∫

b

a
f(x) dx are correct to within an

error that does not exceed tol.

Lipschitz Functions

To get started, we derive an error estimate for each subdivision
[xn, xn+1]. An error estimate for the entire interval [a, b] is obtained by
adding all the error estimates for the subdivisions. The error estimate
will be derived for the left sum; that for the right sums follows in
exactly the same way. We begin by noting that

|f(x) − f(xn)| ≤ L|x − xn| ≤ L|xn+1 − xn| = L∆x

for all x in [xn, xn+1]. Now,
∣

∣

∣

∣

∫

xn+1

xn

f(x) dx −

∫

xn+1

xn

f(xn) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

xn+1

xn

f(x) − f(xn) dx

∣

∣

∣

∣

≤

∫

xn+1

xn

|f(x) − f(xn)| dx

≤ L∆x

∫

xn+1

xn

dx

= L(∆x)2.

Since there are N subintervals in [a, b], the total error committed in using
the left sum approximation is bounded by

NL(∆x)2 =
L|b − a|2

N
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Then,
∣

∣

∣

∣

∫

b

a

f(x) dx − LS

∣

∣

∣

∣

≤
L · |b − a|2

N

is an error estimate for the left sum approximation for a Lipschitz func-
tion. The same estimate holds for a right sum in the same way. To
ensure that the error does not exceed a specified level tol, we require

L · |b − a|2

N
≤ tol

or

N ≥
L · |b − a|2

tol
(f(x) Lipschitz)

If we use at least this many subdivisions, we can be sure that the left
and right sum approximations are correct to within an error which does
not exceed tol.

Continuously Differentiable Functions

As before, we first derive an error estimate for each subinterval and then
sum them to get the final error estimate. The derivation of the error
estimate in this case is based on a clever application of integration by
parts. The estimate for the left sum will be derived. The change needed
to derive the error estimate for the right sum will be mentioned. To start,
let g(x) = x − xn+1 on [xn, xn+1]. Note that g′(x) ≡ 1, g(xn) = −∆x,
and g(xn+1) = 0. Thus,

∫

xn+1

xn

f(x) dx

=

∫

xn+1

xn

f(x) · 1 dx

=

∫

xn+1

xn

f(x)g′(x) dx

= f(x)g(x)
∣

∣

∣

xn+1

xn

−

∫

xn+1

xn

f ′(x)g(x) dx
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= 0 − f(xn)(−∆x) −

∫

xn+1

xn

f ′(x)(x − xn+1) dx

So,
∫

xn+1

xn

f(x) dx = f(xn)∆x −

∫

xn+1

xn

f ′(x)(x − xn+1) dx

which is an exact equation. The first term on the right hand side is the
left sum approximation to the integral on the left side of the equation.
Ignoring the integral on the right hand side gets us back to the left
sum approximation. We estimate the error, which is the integral we are
ignoring, as follows.

|error| =

∣

∣

∣

∣

−

∫

xn+1

xn

f ′(x)(x − xn+1) dx

∣

∣

∣

∣

≤

∫

xn+1

xn

|f ′(x)| · |x − xn| dx

≤ (max |f ′(x)|) · (∆x)2

= ‖f ′‖(∆x)2

The notation ‖f ′‖ stands for max |f ′(x)|. By taking the max over the
entire interval [a, b] rather than the subinterval [xn, xn+1], we get an
estimate for the error which doesn’t depend on the particular subinterval.
Adding the error estimates for each of the N subintervals leads to the

error bound N‖f ′‖(∆x)2 =
‖f ′‖ · |b − a|2

N
.

So,
∣

∣

∣

∣

∫

b

a

f(x) dx − LS

∣

∣

∣

∣

≤
‖f ′‖ · |b − a|2

N

is an error estimate for the left sum when f(x) is continuously differen-
tiable. Choosing g(x) = x − xn on [xn, xn+1] leads to the same error
estimate for the right sum approximation. To ensure that the error does
not exceed a specified level tol, we require

‖f ′‖ · |b − a|2

N
≤ tol
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or

N ≥
‖f ′‖ · |b − a|2

tol
(f(x) continuously differentiable)

If we use at least this many subdivisions, we can be sure that the left
and right sum approximations are correct to within an error that does
not exceed tol. Note the similarity of this formula for N to that for a
Lipschitz function.
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