
TAYLOR POLYNOMIALS
1. Goals of these notes:

(i) Learn how to construct Taylor polynomials of any degree to approximate a given func-
tion near a given point.
(ii) Use Taylor polynomials to approximate function values, solutions to equations, etc.
(iii) Use Taylor polynomials to classify relative maxima and minima in cases where the
second-derivative test fails.

2. Five basic facts about Taylor polynomials

(i) Taylor polynomials provide approximations to a function f(x) near a particular value
x0 of x.
(ii) Taylor polynomials can be constructed of any order, limited by the number of deriva-
tives f has at x0.
(iii) The tangent-line approximation at x0 is the Taylor polynomial of order 1.
(iv) The higher the order of the Taylor polynomial, the better the approximation. More
precisely, let Tn(x) be the Taylor polynomial of order n for f(x) at x0. Define

εn(x) = f(x) − Tn(x);

in other words, εn(x) is the error in the approximation of f by Tn at the point x. Then

lim
x→x0

εn(x)
(x − x0)n

= 0.

(Note that the bigger n is, the faster ε(x) approaches zero.)
(v) The Taylor polynomial Tn of order n at the point x0 is given by the formula:

Tn(x) = f(x0)+
f ′(x0)

1!
(x−x0)+

f ′′(x0)
2!

(x−x0)2+
f ′′′(x0)

3!
(x−x0)3+· · ·+ f (n)(x0)

n!
(x−x0)n

3. Examples

As an example we consider the function f(x) = x sin(πx), and x0 = 1. With x0 = 1,
it just happens that the graph of f crosses the x-axis at x0.

The first five Taylor polynomials are:

T0(x) = 0;
T1(x) = −π(x − 1);

T2(x) = −π(x − 1) − π(x − 1)2;

T3(x) = −π(x − 1) − π(x − 1)2 +
π3

6
(x − 1)3;

T4(x) = −π(x − 1) − π(x − 1)2 +
π3

6
(x − 1)3 +

π3

6
(x − 1)4.



(The next section shows how to calculate these.) Note that the degree d of each Tn equals
n. This is not true in every case; but it is always true that the d ≤ n. Note also that each
polynomials equals the previous one plus one additional term in (x − 1)n. This is always
the case, except that the coefficient of the additional term is sometimes zero.

Figure 1 shows the graphs of T1, T2, T3, and T4. You can see that the approximation
improves as the order increases, especially in the neighborhood of x = x0 (where the graph
crosses the x-axis).

T1 T2 T3 T4

Figure 1

We can also see how the accuracy increases with the order by comparing values of
Tn(x) for a value of x near x0 = 1 (such as x = 1.3) with the exact value of f(1.3) =
(1.3) sin(1.3π) = −1.051722093:

n Tn(1.3) error = Tn(1.3) − f(1.3)
0 0 1.051722093
1 −0.942477796 0.109244296
2 −1.225221135 −0.173499042
3 −1.085692890 −0.033979797
4 −1.043834416 0.007887676

The advantage of increasing n is greater for a value of x closer to x0 (such as x = 1.01):

n Tn(1.1) error = Tn(1.1) − f(1.1)
0 0 1.051722093
1 −0.314159265 0.025759428
2 −0.345575191 −0.005656498
3 −0.340407479 −0.000488785
4 −0.339890707 0.000027985



4. Calculating Taylor polynomials

We recommend that you calculate Taylor polynomials in tabular form. As an example,
we will calculate T4 for f(x) = x sin(πx) around x0 = 1. The headings of the table look
like this:

n f (n)(x) f (n)(x0) cn

Step 1: Fill in the first column with values of n starting with 0 up to the order of the
polynomial we want to calculate (4 in this case):

n f (n)(x) f (n)(x0) cn

0
1
2
3
4

Step 2: Fill in the second column with the function f(x), followed by its first, second,
etc. derivatives:

n f (n)(x) f (n)(x0) cn

0 x sin(πx)
1 πx cos(πx) + sin(πx)
2 −π2x sin(πx) + 2π cos(πx)
3 −π3x cos(πx) − 3π2 sin(πx)
4 π4x sin(πx) − 4π3 cos(πx)

Step 3: Fill in the third column by plugging the value of x0 (1 in this case) into the
formulae in the second column. So the first value is 1 · sin(π · 1) = 0, the next value is
π · 1 · cos(π · 1) + sin(π · 1) = −π, etc.:

n f (n)(x) f (n)(x0) cn

0 x sin(πx) 0
1 πx cos(πx) + sin(πx) −π
2 −π2x sin(πx) + 2π cos(πx) −2π
3 −π3x cos(πx) − 3π2 sin(πx) π3

4 π4x sin(πx) − 4π3 cos(πx) 4π3

Step 4: Fill in the fourth column by dividing the values in the previous column by n!.
(Recall that 1! = 1, 2! = 1 · 2 = 2, 3! = 1 · 2 · 3 = 6, etc.; and that 0! is defined to be 1):

n f (n)(x) f (n)(x0) cn

0 x sin(πx) 0 0/0! = 0
1 πx cos(πx) + sin(πx) −π −π/1! = −π
2 −π2x sin(πx) + 2π cos(πx) −2π −2π/2! = −π
3 −π3x cos(πx) − 3π2 sin(πx) π3 π3/3! = π3/6
4 π4x sin(πx) − 4π3 cos(πx) 4π3 4π3/4! = π3/6



Step 5: Put the polynomial together by using the values in the fourth column as
coefficients of powers of (x − x0) [in this case, (x − 1)]:

T4(x) = 0 − π(x − 1) − π(x − 1)2 +
π3

6
(x − 1)3 +

π4

6
(x − 1)4.

Note that we can get all Taylor polynomials of smaller orders by removing terms from
T4:

T3(x) = 0 − π(x − 1) − π(x − 1)2 +
π3

6
(x − 1)3;

T2(x) = 0 − π(x − 1) − π(x − 1)2;
T1(x) = 0 − π(x − 1);
T0(x) = 0.

The foregoing calculation can be summarized by the formula:

Tn(x) = f(x0) +
f ′(x0)

1!
(x − x0) +

f ′′(x0)
2!

(x − x0)2 + · · ·+ f (n)(x0)
n!

(x − x0)n.

This is the unique polynomial of degree not exceeding n which matches the values of f
and all its derivatives up to order n at x0 (the degree is less than n if f (n)(x0) happens to
be zero.

Exercise: Calculate T6 for the function f(x) = e3x around x0 = 0. Use the space
below.

n f (n)(x) f (n)(x0) cn

Answer:

T6(x) = 1 + 3(x − 0) +
9
2
(x − 0)2 +

9
2
(x − 0)3 +

27
8

(x − 0)4 +
81
40

(x − 0)5 +
81
80

(x − 0)6.



5. Accuracy of Taylor polynomial approximation

Calculating Taylor polynomials of higher order entails more work. The advantage
which offsets the greater work required is improved accuracy. This accuracy can be de-
scribed as follows. The Taylor polynomial Tn of order n for a function f around a value
x0 can be calculated provided that f can be differentiated n times at x0.

Let εn(x) be the error entailed in approximating f by Tn:

εn(x) = f(x) − Tn(x).

Then

lim
x→x0

εn(x)
(x − x0)n

= 0.

(Note that the bigger n is, the faster ε(x) approaches zero.)

6. Exercises

Problems 1-10: Find the Taylor polynomials T0, . . . , T6 for the given function f around
the given value x0.

1. f(x) = ex, x0 = 0 2. f(x) = ex, x0 = 2
3. f(x) = sinx, x0 = 0 4. f(x) = cos x, x0 = 0
5. f(x) = sinx, x0 = π/2 6. f(x) = lnx, x0 = 1
7. f(x) =

√
x, x0 = 1 8. f(x) =

√
x, x0 = 9

9. f(x) = x lnx, x0 = 1 10. f(x) = x4, x0 = 2

11. Sketch the graphs of the polynomials T0, . . . , T6 from Problem 4 together with f(x) =
cos x for 0 ≤ x ≤ 4π.
12. (a) Use each of the polynomials T0, . . . , T6 found in Problem 6 to estimate ln(1.1).
Calculate the error in each approximation. (b) Repeat for x = 1.001. (c) Describe any
patterns you see in the answers.



7. Application of Taylor polynomials: solving equations

Polynomial approximations similar to Taylor polynomials are a widely-used tool in sci-
ence and engineering. The advantage of the approximation in some situations is simplicity:
polynomials can be calculated using just the operations of addition and multiplication.

Example: Use Taylor polynomials to find approximate solutions to the equation

x sin(πx) = 0.2.

We know no algebraic method for directly solving this equation. Taylor polynomial ap-
proximations let us use known techniques from algebra for solving polynomial equations.

Since f(x) = x sin(πx) is the same function used as an example in Sections 3 and
4, we have already calculated some Taylor polynomials for this function around the value
x0 = 1, in particular:

T1(x) = −π(x − 1);

T2(x) = −π(x − 1) − π(x − 1)2.

Note also that the base value x0 = 1 solves the equation f(x) = 0, which is close to our
equation f(x) = 0.2. Thus we can expect that our equation might have a solution near
the value x0 = 1, where the Taylor polynomials are a good approximation.

First we solve T1(x) = 0.2. In other words,

−π(x − 1) = 0.2

or x = 1 − 0.2/π = 0.93634. We will call this value x1. How good is this solution to our
equation? We can judge by comparing f(x1) with the desired value 0.2. In fact,

f(x1) = x1 sin(πx1) = 0.18602,

with an error of 0.18602 − 0.2 = −0.01398.
(By the way, it may not be obvious, but this calculation is equivalent to one step of

Newton’s method, which you will study later.)
For a better approximation, we solve T2(x) = 0.2. In other words,

−π(x − 1) − π(x − 1)2 = 0.2.

We can use the quadratic formula to solve for (x − 1):

x − 1 =
−π ±

√
π2 − 4(0.2)(π)
2(π)

= −0.93167 or − 0.06833,

so x = 0.06833 (we call this value x2−) or x = 0.93167 (we call this value x2+).
We can check the quality of these approximations by calculating the value of f :

f(x2−) = 0.01456 (with an error of 0.01456 − 0.2 = −0.18544 and f(x2+) = 0.19847
(with an error of 0.19847−0.2 = 0.00153). It is not surprising that x2+ works much better
than x2− since x2+ is closer to the base value x0.



8. Application of Taylor polynomials: local extrema

Let’s review the second-derivative test we learned previously for identifying local max-
ima or minima (rephrased):

(i) If f ′(x0) exists and is nonzero, then f does not have a local extremum at x0.

(ii) If f ′(x0) = 0 and f ′′(x0) exists and is positive (negative) then f has a local minimum
(maximum) at x0.

(iii) If f ′(x0) = 0 and f ′′(x0) = 0 then x0 may be a local maximum or local minimum for
f , or neither.

In Case (iii) the criterion gives us no information about the behavior of f near x0.
We can use Taylor polynomials to resolve many instances of Case (iii).

Example 1: Consider the function f(x) = −2 cos x−x2 near the point x0 = 0. Taking
derivatives, we find

f ′(x) = 2 sin x − 2x, f ′(x0) = 0;
f ′′(x) = 2 cos x − 2, f ′′(x0) = 0,

so this is a case where the second-derivative test above fails to yield an answer.
How can we use Taylor polynomials to resolve this situation? Consider the polynomial

T8 of order 8:

T8(x) = −2 − (x − x0)4

12
+

(x − x0)6

360
− (x − x0)8

20160
.

Why should we use T8 rather than some other order? In fact, T8 is not the best
choice for the following reason. In order to determine whether f has a local extremum at
x0 = 0, we are concerned only with values of x near x0. When x gets close enough to x0,
(x − x0)4/12 will be much larger in size than both (x − x0)6/360 and (x − x0)8/20160.
Thus the only really important terms in the polynomial above are the first two nonzero
terms:

T8(x) = −2 − (x − x0)4

12
+ · · · = T4(x) + · · · .

The behavior of f near x0 in this case matches that of T4. Now we just have to
recall that the graph of −x4 has a local maximum at 0. Thus the graph of T4 has a local
maximum at x0.

Example 2: Consider the function f(x) = 64
√

x − 24x + x2 near the point x0 = 4.
Calculating derivatives, we find:

f ′(x) =
32√
x
− 24 + 2x, f ′(x0) =

32
2

− 24 + 8 = 0;

f ′′(x) = − 16
x3/2

+ 2, f ′′(x0) = −16
8

+ 2 = 0,

so the second-derivative test again fails to yield an answer. Taking one additional deriva-
tive, we find:

f ′′′(x) =
24

x5/2
, f ′′′(x0) =

24
32

=
3
4
.



Noting that f(x0) = 48, we can calculate T3:

T3(x) = 48 +
1
8
(x − x0)3.

The behavior of f near x0 matches that of T3, and the behavior of T3 near x0 matches
that of the function x3 near 0. Since x3 has no local extremum at 0, f therefore has no
local extremum at x0.

It is not necessarily actually to calculate a Taylor polynomial to decide whether f has
a local extremum at a given point. We can streamline the calculation to yield the following
criterion, which extends the second-derivative test studied earlier.

Evaluate successive derivatives of f at x0 until a nonzero value is found.

(i) If the order of the first nonzero derivative is odd, then f has no local extremum at x0.
(By the way, this implies f ′(x0) = 0.)

(ii) If the order of the first nonzero derivative is even, then f has a local extremum at
x0. This extremum is a minimum (maximum) if the value of the derivative is positive
(negative).

Example 3: Consider the function f(x) = −2 cos x − x2 near the point x0 = 0 (same
as Example 1). Evaluate derivatives at x0 = 0 until we get a nonzero value:

f ′(x) = 2 sinx − 2x, f ′(x0) = 0;
f ′′(x) = 2 cosx − 2, f ′′(x0) = 0;
f ′′′(x) = −2 sinx, f ′′′(x0) = 0;

f iv(x) = −2 cosx, f iv(x0) = −2.

Since the fourth derivative is the first with a nonzero value, and is negative, we know that
f behaves near x0 like −x4 behaves near 0, and has a local maximum.

Example 4: Consider the function f(x) = 64
√

x − 24x + x2 near the point x0 = 4
(same as Example 2). Evaluate derivatives at x0 = 0 until we get a nonzero value:

f ′(x) =
32√
x
− 24 + 2x, f ′(x0) =

32
2

− 24 + 8 = 0;

f ′′(x) = − 16
x3/2

+ 2, f ′′(x0) = −16
8

+ 2 = 0;

f ′′′(x) =
24

x5/2
, f ′′′(x0) =

24
32

=
3
4
.

Since the third derivative is the first with a nonzero value, and is positive, we know that
f behaves near x0 like x3 near 0, and thus has no local extremum.

In many cases this method will successfully classify a point as a relative maximum,
relative minimum, or neither for a function. However, in some cases it still fails to yield an
answer. One possibility is that all derivative values for a function may be zero at a point,



even though the function is not constant. Such functions are not simple to describe, but
one example is:

f(x) =
{

e−1/x2
, if x 6= 0;

0, if x = 0.

9. Exercises

Problems 1-4: (a) Find the Taylor polynomials for f of orders 1 and 2 about the given
value x0; (b) Use the polynomials from part (a) to find approximate solutions to the given
equation; (c) Calculate the error in the resulting value of f for each approximate solution
from part (b).

1. (a) f(x) = x + cos x, x0 = 0; (b) x + cos x = 1.15
2. (a) f(x) = ex − x2, x0 = 0, (b) ex − x2 = .9
3. (a) f(x) = x1/3 + x1/5, x0 = 1; (b) x1/3 + x1/5 = 2.2
4. (a) f(x) = ln x − x, x0 = 1; (b) ln x − x = −1.1

Problems 5-12: Use the method of Section 8 to identify the given value x0 as a local
maximum, local minimum, or neither for the given function f .

5. f(x) = 9x5 − 20e3x−3 + 15x, x0 = 1 6. f(x) = lnx + e1−x/2, x0 = 2
7. f(x) = tanx − 2x, x0 = π/4 8. f(x) = cos x + sec x, x0 = 0
9. f(x) = ex − ln(x + 1) + 2 cosx, x0 = 0 10. f(x) = tan x − sinx, x0 = 0
11. f(x) = (x3 − 6x2 + 15x − 16)ex, x0 = 1 12. f(x) = (2 + x2) cos x, x0 = 0

13. Show that the method of Section 8 fails to classify the value x0 = 0 for the function

f(x) = x10/3.

Explain why. Classify this point by graphing the function.

14. Repeat Problem 13 using the function

f(x) = x11/3.



Answers to exercises

From Section 6:

In the following, T0, T1, . . ., T5 can be obtained by truncating T6.

1. T6(x) = 1 + x + x2

2 + x3

6 + x4

24 + x5

120 + x6

720 .

2. T6(x) = e2 + e2(x − 2) + e2

2 (x − 2)2 + e2

6 (x − 2)3 + e2

24(x − 2)4 + (x−2)5

120 + (x−2)6

720 .

3. T6(x) = x − x3

6 + x5

120 .

4. T6(x) = 1 − x2

2 + x4

24 − x6

720 .

5. T6(x) = 1 − (x−π/2)2

2 + (x−π/2)4

24 − (x−π/2)6

720 .

6. T6(x) = (x − 1) − (x−1)2

2 + (x−1)3

3 − (x−1)4

4 + (x−1)5

5 − (x−1)6

6 .

7. T6(x) = 1 + x
2
− x2

8
+ x3

16
− 5x4

128
+ 7x5

256
− 21x6

1024
.

8. T6(x) = 3 + 1
6 (x − 9) − 1

216(x − 9)2 + 1
3888(x − 9)3 − 5

279936(x − 9)4 + 7
3038848(x − 9)5 −

7
60466176(x − 9)6 .

9. T6(x) = (x − 1) + (x−1)2

2 − (x−1)3

6 + (x−1)4

12 − (x−1)5

20 + (x−1)6

30 .

10. T6(x) = 16 + 32(x − 2) + 24(x − 2)2 + 8(x − 2)3 + (x − 2)4 .

From Section 9:

In the following, x2+ and x2− may be interchanged, depending on the form into which
the quadratic equation is put before solving. The important thing is to choose the one of
x2+ and x2− which is closer to x0.

1. (a) x1 = .15, x2− = 0.16334. (b) f(x1) = 1.13877 (error of −0.01123), f(x2−) = 1.15003
(error of 0.00003).

2. (a) x1 = −.1, x2− = −0.09545. (b) f(x1) = 0.89484 (error of −0.00516), f(x2−) =
0.89986 (error of −0.00014).

3. (a) x1 = 1.375, x2− = 1.44641. (b) f(x1) = 2.17775 (error of −.02225), f(x2−) =
2.20753 (error of 0.00753).

4. (a) x1 does not exist, x2+ = 1.44721, x2− = 0.55279 (equidistant from x0). (b)
f(x2+) = −1.07757 (error of 0.02243), f(x2−) = −1.14557 (error of −.04557).

5. maximum 6. neither 7. minimum 8. minimum 9. neither 10. neither 11. minimum
12. maximum


