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Abstract—One of the basic challenges to robust iris 
recognition is iris segmentation.  This paper proposes the use of 
a feature saliency algorithm and an artificial neural network to 
perform iris segmentation.  Many current Iris segmentation 
approaches assume a circular shape for the iris boundary if the 
iris is directly facing the camera.  Occlusion by the eyelid can 
cause the visible boundary to have an irregular shape.  In our 
approach an artificial neural network is used to statistically 
classify each pixel of an iris image with no assumption of 
circularity.  First, a feed-forward feature saliency technique is 
performed to determine which combination of features 
contains the greatest discriminatory information.  Image 
brightness, local moments, local orientated energy 
measurements and relative pixel location are evaluated for 
saliency.  Next, the set of salient features is used as the input to 
a multi-layer perceptron feed-forward artificial neural network 
trained for classification.  Testing showed 96.46 percent 
accuracy in determining which pixels in an image of the eye 
were iris pixels.  For occluded images, the iris masks created by 
the neural network were consistently more accurate than the 
truth mask created using the circular iris boundary 
assumption.  Post-processing to retain the largest contiguous 
piece in the iris mask increased the accuracy to 98.2 percent. 

I. INTRODUCTION 
he iris is the colored portion of the eye surrounding the 
pupil. Its textured pattern is stable over time, distinct 

from person to person, and distinct from left eye to right eye 
of the same person [1].  Human identification based on 
patterns within the iris is potentially one of the most 
accurate methods of biometric identification [1].  Iris 
identification still poses several challenges that must be 
overcome before a truly robust identification system can be 
fielded.  One of the basic challenges is iris segmentation.  
This paper proposes the use of a feature saliency algorithm 
and an artificial neural network to perform iris segmentation.   

 
Many current iris segmentation approaches assume a 
circular shape for the pupil and limbic boundaries that 
border the iris.  Often the pupil and limbic boundaries are 
slightly elliptical and may not share the same centroid [1].  
Occlusion by the eyelid and non-orthogonal viewing angles 
can also cause the visible boundary of the iris to have an 

irregular shape.  Each of these issues can cause a 
segmentation system, based on a circular assumption, to 
produce inaccurate results. 
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II. METHODOLOGY 
To perform iris segmentation without the assumption of 

circularity, an artificial neural network is used to statistically 
classify each pixel of an iris image as one of three classes: 
iris, pupil, or other.  First, a feed-forward feature saliency 
technique (described in section IV) is performed to 
determine which combination of features contains the most 
discriminatory information.  Local features, including local 
image statistics (mean, standard deviation, skewness, and 
kurtosis) and local orientated energy measurements, are 
evaluated for saliency.  Various neighborhood sizes are used 
to compute each local measurement.  Feature saliency is 
performed using all local features, with each feature 
computed at all neighborhood sizes.  The saliency process 
identifies a subset of features that jointly contains the most 
discriminatory information for the problem at hand.  Next, 
this subset of features is used as the input to a multi-layer 
perceptron feed-forward artificial neural network trained for 
classification.  The number of nodes within the hidden layer 
of the neural network is kept low to deter memorization and 
to decrease computational run time.  The number of hidden 
nodes was varied for thoroughness, but six hidden nodes 
provided acceptable accuracy.   

 
A subset of the University of Bath iris database [2] was 

used to train the neural network.  The database contains 
2000 grayscale near infrared images.  The images consist of 
twenty pictures of each eye from 50 individuals.  Testing 
was performed on a different subset of the database.  
Ground truth was generated using an in-house algorithm, 
which used local statistics and a circular iris boundary 
assumption [3].  The truth masks for images containing 
occluded and/or non-circular irises were corrected by hand 
to generate the training and test sets.  The neural network 
was trained using the error back-propagation algorithm.  
Initial results indicated that the local brightness-based 
features did not hold the discriminatory information 
necessary to properly segment the images within the test set.  
Pixel location features, such as pixel distance and angle 
from the pupil center, were added.  The addition of these 
features allowed the neural network to statistically determine 
the most likely locations of the iris boundaries and focus its 
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decision making on those pixels. 
 
One of the issues confronted when setting up the 

classification problem was determining the number of 
classes to classify.  Initially, two classes were used.  The 
classifier was asked to classify each pixel as iris or non-iris.  
This meant the dark pupil and the lighter portions of the 
image were included in the same class.  Since the iris 
contains shades of gray somewhere between the dark pupil 
and light sclera (white portion of the eye), the non-iris class 
had a bimodal distribution.  This distribution violated the 
Gaussian Probability Density Function (PDF) assumption 
made in the Bayesian classifier.  The feature selection 
process thus performed sub-optimally and initial classifier 
results were less accurate than desired.  To address this 
bimodal distribution issue, a 3-class problem was evaluated.  
The pupil was designated as the third class.  This allowed 
the grayscale values within the two non-iris classes to form a 
more Gaussian distribution.  Initial classification results 
showed a large accuracy improvement using the 3-class 
problem.  In many cases, the pupil can be segmented more 
easily than the iris.  Adding the assumption that the pupil 
center and radius are known, the pupil pixels can be 
removed from the training and test sets.  Removing the pupil 
from consideration returned the problem to a 2-class 
problem.  This modified 2-class problem produced the 
highest classification accuracy in initial testing and was used 
in the remainder of this research. 

III. FEATURE SET 
A total of 264 local features, including local image 

statistics (mean, standard deviation, skewness, and kurtosis) 
and local orientated energy measurements were evaluated 
for feature saliency.  Each local feature was computed using 
multiple neighborhood sizes and shapes. Each feature listed 
in table 1 was computed using a neighborhood size of 3, 7, 
11, 15, 19, 21, 25 and 29 pixels along the major axis. Five 
shaped neighborhoods were used to compute the local 
statistics.  A square neighborhood centered about each pixel 
being measured was the first to be tested.  Next a rectangular 
neighborhood whose major axis is parallel to the vector 
from the pupil center to the pixel being measured was 
added.  This forms a radial local statistic.  A rectangular 
neighborhood whose major axis is perpendicular to the 
radial local statistic was also added.  For completeness, a 
vertical and a horizontal rectangular neighborhood were also 
evaluated.  Figure 1 shows the five neighborhood shapes. 
Each local statistic computed at each neighborhood 
size/shape produced a single feature for a total of 160 local 
statistic features. 
 

Local orientated energy measurements were computed 
using oriented band pass filters (similar to Gabor filters).  
Four orientations of the filters were computed (0, 45, 90 and 
135 degrees) and the maximum response was selected as 
magnitude and direction of the local pixel energy as detected 
by the particular orientated filter.  Each oriented filter is 
designed to have an affinity for objects of a particular size.  

Each filter’s size affinity is determined by the size of the 

positive region within its filter kernel.  We will refer to this 
positive region as the filter’s receptive region size.  Various 
receptive region sizes were computed and each size 
produced two features (magnitude and direction).   

 
Measurements 
Square Local mean 
Square Local standard deviation 
Square Local skewness 
Square Local kurtosis 
Radial Local mean 
Radial Local standard deviation 
Radial Local skewness 
Radial Local kurtosis 
Perpendicular Local mean 
Perpendicular Local standard deviation 
Perpendicular Local skewness 
Perpendicular Local kurtosis 
Vertical Local mean 
Vertical Local standard deviation 
Vertical Local skewness 
Vertical Local kurtosis 
Horizontal Local mean 
Horizontal Local standard deviation 
Horizontal Local skewness 
Horizontal Local kurtosis 
Local orientated energy magnitude 
Local orientated direction 
Radial Mean - Perpendicular Mean 
Radial StdDev minus Perpendicular StdDev 
Radial Skewness minus Perpendicular Skewness 
Radial Kurtosis minus Perpendicular Kurtosis 
Radial Mean minus Square Mean 
Radial StdDev minus Square StdDev 
Radial Skewness minus Square Skewness 
Radial Kurtosis minus Square Kurtosis 

 
Fig. 1.  Five neighborhood shapes used to compute local statistics 



 
 

 

Radial Mean divided by Iris Mean 
Radial StdDev divided by Iris StdDev 
Radial Skewness divided by Iris Skewness 
Radial Kurtosis divided by Iris Kurtosis 

 
Table 1.  Measurements and neighborhood sizes used to create a feature set. 

 
Several ratios and differences of the various features were 

also computed to form additional features, which have a 
degree of brightness invariance.  Table 1 shows all 
measurements used to create the feature set.   

 
Initial neural network test runs indicated that the 264 

local features (based on brightness only) did not contain the 
discriminatory information required to accurately segment 
the iris.  Classification accuracy was approximately 86 
percent when compared to the truth masks.  Visually, many 
of the segmented images were poor quality.  Pixel location 
features were added to the feature set and the classification 
accuracy improved by more than 10 percent.  The pixel 
location features consisted of the following measurements 
for each evaluated pixel. 

 
Euclidean distance from pupil center 
Euclidean distance from pupil boundary 
Angle from pupil center 
Vertical distance from pupil center 
Horizontal distance from pupil center 

 
Table 2.  Pixel location features added to the 264 local features 

 
The majority of the previous incorrect classifications 

were found to be located on the iris-limbic boundary.   The 
10 percent improvement gained from the pixel location 
features translated into a dramatic improvement visually.   

 
Processing every pixel within each training set image 

proved to be impractical.  A standard image from the 
University of Bath database has a resolution of 1280 by 960 
pixels.  This amounts to 1.2 million pixels per image or 24.6 
million observations within the entire training set.  To 
increase the computational tractability of the problem, each 
image was cropped to a 600 by 600 pixel region surrounding 
the pupil center.  Selecting only every 5th pixel for 
processing additionally reduced the computation time.  In 
total, the size of the training set was reduced to 1.44 million 
observations taken from 20 images which contained a mix of 
right and left eyes. 

IV. FEATURE SALIENCY 
Feature saliency was performed to determine a subset of 

features that jointly contain the greatest discriminatory 
information that will distinguish the iris from the rest of the 
eye.  To find this feature subset, a feed-forward, Bayesian 
classifier based feature saliency technique was used.  The 
feed-forward technique is a sub-optimal approach, but is 
computationally practical and delivers excellent results in 
practice.  Using this approach, hundreds of thousands of 

observations, each containing hundreds of features, can be 
evaluated within an hour on a desktop PC.  The Bayesian 
classifier equation used within the algorithm utilizes a 
simple Euclidean distance discriminate and a Gaussian PDF.  
The jth discriminate is computed over n features using 
equation (1) where μi and σi are the mean and standard 
deviation for the ith feature.. This Gaussian assumption 
worked well since all of the local statistical computations 
used a Gaussian PDF assumption. 
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To begin, the feed-forward technique evaluates the 

discriminatory power of each feature individually and keeps 
the single feature that demonstrates the greatest 
discriminatory power.  Next, each feature is individually 
used in conjunction with the first feature and the pair that 
contains the greatest discriminatory power is selected.  This 
process, of adding individual features to the group of 
previously selected features, is continued until no 
discriminatory power is gained by adding an additional 
feature to the previously selected features.  Because this is a 
local search methodology, the results are considered sub-
optimal.  The resulting feature subset may be optimal, but is 
not guaranteed to be.  Because of the large number of pixels 
in the training image set and the large number of features 
evaluated, a single global search could take weeks or months 
to complete.  For this research problem, using a local search 
allowed the compute-evaluate-improve cycle to occur on a 
daily basis. 

 
 The discriminatory power of each subset of features was 

measured by using a Bayesian classifier.  Each feature 
subset was evaluated on the entire training set and the subset 
producing the highest classification accuracy was deemed to 
contain the greatest discriminatory power of the subsets 
evaluated.  Since a Bayesian classifier is a statistics based 
classifier, the selected subset is statistically the most salient 
feature subset of the subsets evaluated.  A Bayesian 
classifier was selected because of its computational speed.  
Using an artificial neural network as a feature selection 
classifier was tested, but extended the processing time by 
several orders of magnitude.  In our probative initial 
research, the slight classification accuracy gains provided by 
the neural network did not justify the immense time loss it 
introduced.  A neural network based approach may be 
practical if executed on a high performance computing 
system, or when used for fine-tuning a production iris 
recognition system. 

 



 
 

 

Features: 4, Percent correct = 90.19 
Features: 4 136, Percent correct = 92.30 
Features: 4 136 153, Percent correct = 93.47 
Features: 4 136 153 201, Percent correct = 93.63 
Features: 4 136 153 201 3, Percent correct = 94.03 
Features: 4 136 153 201 3 7, Percent correct = 94.37 
Features: 4 136 153 201 3 7 152, Percent correct = 94.55 
Features: 4 136 153 201 3 7 152 5, Percent correct = 94.65 
Features: 4 136 153 201 3 7 152 5 121, Percent correct = 94.78 
Features: 4 136 153 201 3 7 152 5 121 22, Percent correct = 94.84 

 
Fig. 2.  An example of the feature saliency algorithm selecting features 

 
Figure 2 shows an example of the feature saliency 

algorithm evaluating subsets of the 269 features for 
classification accuracy.  The feature numbers correspond to 
the following features: 

 
Feature  4:  Euclidean distance from Pupil Center 
Feature 136:  Square Mean (region size = 25) 
Feature 153:  Perpendicular StdDev (region size = 29) 
Feature 201: Radial StdDev - Square StdDev (region size = 11) 
Feature  3:  Euclidean distance from Pupil Boundary 
Feature  7:  Y Distance from Pupil Center 
Feature 152:  Perpendicular Mean (region size = 29) 
Feature  5:  Absolute value of angle from Pupil Center (0-180) 
Feature 121:  Vertical StdDev (region size = 21) 
Feature 22:  Vertical Skewness (region size = 3) 

 
Fig. 3.  Ten most salient features selected by the feature selection algorithm. 

 
Using a Bayesian classifier and the features listed in 

Figure 3, the pixels in the 20-image test set could be 
classified with 94.84 percent accuracy when compared to 
the truth masks.   
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Fig. 4.  Classification accuracy vs. number of features used for classification 

 
From Figure 4 it can be seen that each additional feature 

provided diminishing incremental classification 
improvement.  To speed processing, the top five or six 
features could be used with little degradation in 
classification accuracy.  Typically the last few features in the 
salient feature subset provide classification of statistically 
outlying data points.  They typically do not generalize well 

and add little accuracy when performing classification on 
the test set. 

V. NEURAL NETWORK AND POST PROCESSING 
A multi-layer perceptron (MLP) feed-forward artificial 

neural network was used for classification of the test set.  An 
artificial neural network can offer a performance advantage 
over a Bayesian classifier if the feature distributions do not 
match the Bayesian PDF assumption [10].  The Bayesian 
classifier used in the feature selection process assumed the 
data to have a Gaussian distribution.  The error back-
propagation training algorithm used to train the MLP 
traverses an error surface to minimize classification error 
[9].  In this process, no PDF assumption is made.  If the 
training and test features do not have a true Gaussian 
distribution, the artificial neural network should perform 
better [10].   

 
The MLP was trained on the 20 image training data set 

consisting of 1.44 million observations.  The 10 features, 
selected in the feature saliency process (Fig 3), were used as 
input to the MLP.  To remove any effects caused by the 
random neural network internal weight settings at the start 
of training, the neural network was trained 10 times and the 
weights from the best training run were retained for use in 
the testing phase. 
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Fig. 5.  Using an Artificial Neural Network to segment the iris. 
 
Figure 5 demonstrates how the neural network was 

configured to segment the iris.  For each pixel in the iris 
image, the selected features were computed and presented to 
the neural network for classification.  To decrease 
computational run time, every second pixel was processed 
with little noticeable degradation in mask quality. 

VI. RESULTS 
The test set contained 40 images composed of left and 

right eyes of 13 individuals. No training images were 
contained in the test set. The artificial neural network 
achieved 97.32 percent classification accuracy on the test 
set. The neural network provided a 2.49 percent 
improvement over the Bayesian classifier results.  This 
improvement indicates that some of the selected features do 
not have a true Gaussian distribution.  The number of nodes 
within the hidden layer of the neural network was kept low 
to deter memorization and to decrease computational run 
time.  Six hidden nodes were sufficient to achieve the 97.32 
percent classification accuracy.   

 
Post processing was used to increase the accuracy and 

quality of the iris mask.  A number of the incorrectly 



 
 

 

classified pixels were not contiguously connected to the 
largest grouping of pixels in the mask.  Locating and 
retaining only the largest group of contiguous pixels 
increased the iris mask accuracy to 98.2 percent.  Additional 
accuracy could have been pursued by using basic 
morphological operations, such as open or close, but no 
attempt was performed. 

 

 

Fig. 6.  Examples of a truth mask (left) and a neural network produced iris 
mask (right).  The original image for this eye is shown in figure 7.  The 
large pupil opening in the iris mask is due to the removal of the pupil area 
from the training and test sets.   

 
In many images, the location of the iris boundaries was 

subjective due to the gradual color transition of the limbic 
boundary.  This subjective nature of this boundary called 
into question the accuracy of the truth masks used to 
measure classification correctness.   For many images, visual 
inspection often provided greater insight to correctness than 
numerical accuracy.  Figure 6 shows a manually modified 
truth mask and the corresponding neural network produced 
iris mask.  No attempt was made to locate the pupil 
boundary.  The large pupil opening in the iris mask was 
created when the pupil area was removed from the training 
and test sets to create a two-class classifier problem. 

Fig. 7.  The perimeter of a neural network produced iris mask overlaid onto 
the original iris image.  Note this eye has a second fold beneath the outer, 
upper eyelid, which was correctly segmented by the neural network. 

 
Figure 7 shows the iris mask perimeter overlaid onto the 

original image of the eye.  This is an image of an Asian eye, 
which is often more difficult to segment than eyes of other 
races.  Eyelashes also occlude this iris.  This was an 
expected result, since no attempt was made to remove 
eyelashes from the truth masks. 

Figure 8 shows two examples of iris segmentation.  The 
upper eye demonstrates performance on a light colored iris 
and the lower demonstrates dark iris performance.  The 
numerical accuracy for each image is 97.9 and 97.6 percent 
respectively, as compared to the truth mask.  The truth mask 

and neural network produced iris mask are presented for 
comparison.  The images in figure 8 represent typical results 
from the test set.  Space precludes including more of the test 
set images in this paper. Most iris masks for non-occluded 
images had accuracies slightly above the 98.2 percent 
average and most occluded images had accuracies slightly 
below the average.  The test set was limited to 40 images 
due to the time required to create non-circular truth masks 
by hand. Sample images from the remainder of the database 
gave visually similar results. 

Neural network produced iris mask Outline signifies Iris Mask (97.6 accurate when compared to Truth Mask)Neural network produced iris mask Outline signifies Iris Mask (97.6 accurate when compared to Truth Mask)

 
Fig. 8.  Example of typical accuracy achieved on the 40-image test set.  
The neural network created iris mask is on the left.  On the right is the 
outline of the iris mask overlaid onto the iris image.  Both a dark colored 
and a light colored iris are shown for comparison. 

 

 
 
Fig. 9.  Example of circular boundary assumption segmentation technique 
use in Kennell, et al.   

 
For comparison, Figure 9 presents segmentation results 

from an algorithm described in [3]. Segmentation was 
performed on the same image as shown in Figure 8. The 
algorithm assumes circular boundaries for the pupil and 



 
 

 

limbic boundaries. Note the elliptical shape of the limbic 
boundary. Modifications to this method include straight 
lines to approximate the upper and lower eyelids [11] or 
curved lines [1]. Neither of these modifications addresses 
elliptical boundaries caused by off-axis viewing angles. 

VII. CONCLUSION 
Feature selection can be used to increase performance 

and decrease processing time.  The neural network improved 
segmentation accuracy over the circular assumption based 
segmentation algorithm.  The neural network produced 
higher accuracy numbers than the Bayesian statistical 
classifier using the same features.  On occluded images, the 
iris masks created by the neural network were consistently 
more accurate than the iris mask created using the circular 
iris boundary assumption.  On non-occluded images, the 
neural network classified irregular shaped boundaries with 
accuracies in excess of 98.2 percent.  The 1.8 percent error 
achieved on the test set was predominately in the occluded 
images.  The majority of the errors occurred at locations 
where a large grouping of eyelashes existed on the eyelid 
and iris boundary.  In some images, the neural network 
exhibited problems distinguishing between eyelash and iris.  
This result was expected, since no effort was made to 
remove eyelashes from the training set.  Visually, the neural 
network segmentation results approached the perceived 
accuracy of the manually created truth masks. 
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