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ABSTRACT 

The iris is currently believed to be the most accurate biometric for human identification. The majority of fielded iris 
identification systems are based on the highly accurate wavelet-based Daugman algorithm. Another promising 
recognition algorithm by Ives et al uses Directional Energy features to create the iris template. Both algorithms use 
Hamming distance to compare a new template to a stored database. Hamming distance is an extremely fast computation, 
but weights all regions of the iris equally. Work from multiple authors has shown that different regions of the iris contain 
varying levels of discriminatory information. This research evaluates four post-processing similarity metrics for 
accuracy impacts on the Directional Energy and wavelets based algorithms. Each metric builds on the Hamming distance 
method in an attempt to use the template information in a more salient manner. A similarity metric extracted from the 
output stage of a feed-forward multi-layer perceptron artificial neural network demonstrated the most promise. Accuracy 
tables and ROC curves of tests performed on the publicly available Chinese Academy of Sciences Institute of 
Automation database show that the neural network based distance achieves greater accuracy than Hamming distance at 
every operating point, while adding less than one percent computational overhead.  
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1. INTRODUCTION 
The majority of todays fielded iris identification systems are based on the highly accurate Daugman algorithm [1, 2, 3]. 
This algorithm first transforms the iris into a small rectangular image using a Cartesian to polar coordinate conversion 
(called unwrapping) of selected points. Wavelet based features are extracted from this image to form an iris signature 
(template). One attractive feature of this algorithm is that Hamming distance (bitwise agreement) is used to compare a 
new iris template to templates stored in a database. Database comparison is typically the largest time expenditure in any 
iris identification algorithm. Hamming distance computation is extremely fast which makes real-time searches of large 
databases practical, but Hamming distance may not be the most accurate way to utilize the information within the iris 
template. Other distance metrics have been proposed [4, 5, 6, 7, 8], and are in use, but many are too computationally 
intensive to be used in real-time systems containing large databases.  

Optimizing the use of the information within the iris is desirable, but a mix of distance metrics may be required to 
achieve the desired computational speed. Using a fast, simple matching method at the pixel level on individual template 
regions can reduce the dimensionality of the problem immensely. This dimensionality reduction would produce a 
quickly computed score on each region within the iris. A more advanced metric can then be applied to the dimensionally 
reduced data to make improved use of the discriminatory content within the iris template. 

A promising identification algorithm has been produced by Ives et al [9]. This algorithm uses an unwrapping method 
similar to the Daugman algorithm. From the rectangular iris image, directional energy features are extracted to create an 
iris template. This algorithm also uses Hamming distance as a match metric. No code is publicly available for this 
algorithm at the time of this writing, but is available to the authors. Since the Daugman algorithm is not publicly 
available (patented), we used Libor Masek’s version of the Daugman algorithm [10, 11] for accuracy comparisons. This 
code is publicly available and the algorithm is documented in detail.  

We used the Chinese Academy of Sciences Institute of Automation (CASIA) iris database [12]. This database, available 
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from the Internet, is composed of images from 108 different eyes, with 7 images of each eye (totaling 756 iris images). 
These images are all 320x280 pixels in dimension. They are 8-bit bitmapped (.bmp) images, each occupying 92,160 
bytes on a hard drive. The CASIA database contains some blurry images, as well as some images where the eye is only 
barely open such that a great deal of the iris is occluded. Only 662 of the 756 images were used in this research, after 94 
poorly segmented images were identified and removed from the database. 

It was shown in [7, 13-16] that individual regions within the iris contain varying degrees of discriminatory information. 
When selecting regions within the iris, annuli are convenient to work with because they allow the use of signature 
shifting to achieve rotation invariance. Fig. 1 shows the accuracy achieved by the Ives et al directional energy based 
system [9] using individual regions of the iris as compared to the entire iris. Fig. 2 shows the accuracy achieved by the 
Masek wavelet based system [10]. Several accuracy measurements are shown for comparison. Best accuracy is defined 
as the minimum number of incorrect decisions regardless of class. Decidability is a statistical distance between class 
distributions proposed by Daugman [3] where a higher number denotes better accuracy. As can be seen in each figure, at 
the majority of operating points, accuracy achieved by individual annulus varies. The goal of this research is to weight 
and combine this information in a computationally efficient manner to achieve greater accuracy than straight Hamming 
distance. 
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Fig. 1.  Accuracy achieved by the Ives et al directional energy based system using individual regions of the iris as 

compared to the entire iris. 

 

Region 
measured 

Accuracy at 
EER (%) 

Best 
Accuracy 

(%) 
Decidability 
(Std Devs) 

Full 
template 99.40 99.63 4.96 
Annulus 1 94.82 99.61 3.32 
Annulus 2 96.42 99.61 3.76 
Annulus 3 96.84 99.59 3.93 
Annulus 4 96.91 99.61 3.86 
Annulus 5 95.13 99.62 3.45 
Annulus 6 92.32 99.58 2.88 
Annulus 7 89.50 99.42 2.51 
Annulus 8 85.46 98.64 2.10 
Annulus 9 80.54 97.01 1.71 
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Fig. 2.  Accuracy achieved by the Masek wavelet based system using individual regions of the iris as compared to the 

entire iris. 



 
 

 
 

2. APPROACH 
Although fast, Hamming distance equally weights each iris template pixel which may not be the most accurate way to 
utilize the information within the iris template. Many alternate metrics are too computationally time consuming to be 
used in real-world applications. Applying a complex distance calculation to each of the thousands of pixels within a 
template can prove computationally intensive when repeated over millions of templates. The dimensionality of the 
computation must be reduced if a complex calculation is to be used on a large database. In this research, Hamming 
distance is used to reduce the computational dimensionality of iris comparisons, followed by a more complex metric to 
form a match similarity score. Several authors have proposed using measurements taken from individual regions within 
the iris template as classification features [7, 16]. In this research, Hamming distance is computed on N regions of the 
iris template, thus reducing the computational dimensionality of the problem to N. Next, a more complex and 
computationally expensive distance metric is applied to this N dimensional data to form a match decision. This paper 
investigates the distance metrics used by four common statistical/non-statistical classifiers and compares the resulting 
accuracy to that achieved using Hamming distance. The highest accuracy method is discussed in detail. Accuracy gains 
are shown for the Masek, and the Ives et al algorithms. Accuracy results are presented for both clean and noisy images. 
The effects of the equation parameters on accuracy are shown. Last, computational cost is compared to the cost of using 
Hamming distance. 

2.1 Distance metrics 

Hamming distance is currently the standard metric used in much research and in the majority of fielded iris identification 
systems [1, 2, 3, 9, 10, 16, 17]. Hamming distance is simply an efficient Boolean method for determining the percentage 
of pixels that mismatch between two iris templates. Each bit in one template is exclusively ORed with the corresponding 
bit in a second template. The bits that mismatch are counted and divided by the total number of bits in the template. This 
gives a similarity score ranging from zero to one, with zero denoting all bits match and one denoting no bits match. 
Often bad or suspect regions within each template are removed from the computations which is a process known as 
masking. 

The use of regional Hamming distance computations as a template preprocessing step reduces the dimensionality of any 
subsequent distance calculation. If Hamming distance values are computed from N regions of an iris template, they form 
an N dimensional signature that can be used for classification. Such a signature is ideal for use as input into a statistical 
or non-statistical pattern classifier for class determination. To avoid a lengthy discussion on classifier basics, the 
mathematical computation used within the classifier will be presented and the computed value will be used as a 
similarity score between two irises. Many classifiers (Bayesian, K-Nearest Neighbor, K-Means, etc) determine class 
membership by combining multidimensional data to compute a distance. A simple Bayesian classifier computes the 
distance from a class mean, in standard deviations, using the equation  

                             ∑ −
=

n i

ii
j

xD 2

2)(
σ
μ

                                                                        (1) 

where Dj is the distance from the jth class, xi is the ith dimensional measurement of the object to be classified, μi is the 
mean of class j in the ith dimension and σi is the standard deviation of class j in the ith dimension. Other classifiers, such 
as the K-Nearest Neighbor, use the computationally simpler Euclidean distance shown in equation 2 

                             ∑ −=
n
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where x1i is the ith dimensional measurement of the object to be classified and x2i is ith dimensional measurement of the 
is a known object to which it is being compared. The K-Means classifier combines the two previous approaches and 
computes Euclidean distance from the mean of each class to determine class membership. Equation 3 describes this 
distance computation. 
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2.2 Neural network distance 

Artificial neural networks have been explored for iris identification. Many approaches, such as [18], formulate the 
identification problem such that the neural network would identify the individual irises (i.e., the neural network contains 
an output class for each individual iris). This means a neural network that could identify 100 people would have 200 
output nodes, each representing an individual iris. This architecture is typically useful for small databases, but requires 
enlarging and retraining of the neural network as the database grows. 

In this research, a neural network is used to identify the statistical pattern present when one iris template matches or does 
not match another. The neural network can be small (thus fast), and will contain only two output nodes representing a 
match or a non-match. The neural network will not need to be retrained as individuals are added to the database. A feed 
forward multilayer perceptron (MLP) artificial neural network, shown in Fig. 3, was used to form the match decision. 
The error back-propagation training algorithm was used to adjust the internal neural network weights. 
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Fig. 3. The feed forward multilayer perceptron artificial neural network architecture used to train weights for use in 

computing a neural network metric. 

Since a typical multilayer perceptron neural network produces a class membership decision as an output, the maximally 
responding output node represents the class membership of the input pattern. To achieve a more descriptive comparison 
to the previously described distance metrics, it is desirable that the neural network produce a distance value as an output. 
For iris template matching, this distance value would represent a similarity score between two iris templates. To achieve 
this goal, the execution version of the neural network was modified as shown in Fig. 4. One of the output nodes was 
removed, leaving one remaining output node which represents a similarity measurement. The sigmoid function on the 
remaining output node was also removed. The purpose of the output sigmoid function was to force and limit the output 
values to one or negative one. Removing the sigmoid function allowed the neural network to output numerical values 
that represent the degree to which it determined two iris templates match. This numerical value can be considered a 
similarity score between two iris templates and will be called the neural network distance. As with the other distance 
metrics, a smaller number from the neural network metric denotes a greater similarity between two templates. Accuracy 
results, identical to those presented in this paper, could be achieved by simply training and executing the unmodified 
neural network. These modifications simply allow the neural network to output a distance measurement that can be 
directly compared to the other distance metrics using Receiver Operator Characteristics (ROC) curves to demonstrate the 
added value at multiple operating points.  
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Fig. 4. Artificial neural network architecture used to compute a neural network metric for template matching. 

Equation 4 shows the computation for the neural network distance where W1j is the jth weight in the first layer of weights 
(connected to the input nodes) and W2i is ith weight in the second layer of weights (connected to the output nodes). By 
definition, the input to the zeroth weight in any layer is one. The input features are the Hamming distance scores of 
individual regions within the iris templates. 
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The unmodified neural network was used when training the internal weights and the modified neural network (using the 
trained weights) was used to compute a similarity score. During the training phase of a neural network, a training 
algorithm adjusts the internal connection weights to minimize mean output error over the training set [19]. An artificial 
neural network can offer a performance advantage over other statistical classifiers if the feature distributions do not 
match the PDF assumptions used in these classifiers [20].  The error back-propagation training algorithm used to train 
the MLP traverses an error surface to minimize classification error [19]. The neural network adjusts mathematical hyper-
plane boundaries to form a near-optimal discriminate between statistical class distributions in a multidimensional space. 
In this process, no PDF assumption is made. The neural network learns the statistical distributions of each class during 
training. A neural network’s classification accuracy approaches the accuracy of a Bayes optimal solution [20] and 
therefore can near-optimally weight template regions, based on the discriminatory content of the individual regions, to 
form a near-optimal similarity score. Because of this weighting, regions that statistically have greater discriminatory 
information content will contribute more to the final match decision than regions that statistically have lower 
discriminatory information content. The training set consisted of 1/100th of the template comparisons performed, and the 
test set consisted of the remaining 99/100th of the template comparisons.  

3. RESULTS 
Fig. 5 and Fig. 6 show a comparison of the various match metrics using the Ives et al Directional Energy algorithm and 
the CASIA iris database.  Each bar in Fig. 5 shows the total accuracy achieved by the Directional Energy templates 
when the corresponding match metric was applied during template matching. Each template was compared to all other 
templates for a total of 218,460 comparisons. The chart on the left side of Fig. 5 shows the accuracies achieved at the 
Equal Error Rate operating point. The chart on the right side of Fig. 5 shows the decidability value of each match metric 



 
 

 
 

based on the statistics of the match and non-match distributions. Fig. 6 shows the ROC curve for each match metric. The 
ROC curve graph gives best perspective of accuracy gains because it demonstrates achieved accuracy over a range of 
operating points. 

 

 
As can be seen in Fig. 5 and Fig. 6, Bayesian distance degraded accuracy at most operating points. The two Euclidean 
distance based metrics offered only slight improvement or degradation in accuracy depending on the operating point. 
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Fig. 6.  Receiver Operating Curves of various similarity metrics as compared to Hamming distance. 
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Fig. 5.  Accuracy achieved by various similarity metrics as compared to Hamming distance. 



 
 

 
 

The Neural network distance improved accuracy at most operating points. The operating region near the knee of the 
ROC curve graph showed significant accuracy improvements. EER, Decidability and ROC results for the Libor Masek 
algorithm were similar to the results of the Ives et al algorithm in both shape and accuracy. These results are omitted 
from this paper due to space considerations. The remainder of this paper will focus on the neural network distance and 
how it compares to straight Hamming distance. ROC curves will be used to present accuracy results. The minimum 
False Match Rate of 0.005 was due to the relative low resolution and quality of the CASIA database. Similar curves of 
test performed on higher resolution databases (Bath, etc.) approach a FMR of 0.0001. These results will be presented in 
future work. 

3.1 Impact of number of hidden nodes on accuracy 

One issue that arises when using neural networks is the question of data memorization. A neural network with a large 
number of hidden nodes has the ability to memorize input data points that are statistical outliers. Another issue is 
computational efficiency. A neural network with a large number of hidden nodes can be computationally expensive to 
execute over a large database. To address each of these issues, only eight hidden nodes were used to produce the results 
presented in this research, except for this section. To demonstrate the impact on accuracy, the number of hidden nodes 
contained within the neural network was systematically varied from two to twenty. First, each iris template was 
horizontally dissected into ten equal sized regions. Each horizontal region within a template represents an annular region 
within the iris. Next, the Hamming distance scores of the individual template regions were computed and used as the 
input to the neural network. Fig. 7 shows the impact that the number of hidden nodes has on identification accuracy. All 
hidden node configurations outperformed the straight Hamming distance metric. As expected, the trend was an accuracy 
improvement as the number hidden nodes was increase. Each neural network configuration was trained multiple times to 
remove some of the random aspects of training a neural network. As can be seen in Fig. 7, six hidden nodes produced 
virtually the same accuracy as the higher node configurations. This number of nodes is small enough to reduce the 
likelihood of memorization and offer a reasonable computational efficiency. 
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Fig. 7.  Receiver Operating Curves showing accuracy achieved, using neural network distance, while varying the 

number of nodes used in the hidden layer of the neural network. Hamming distance accuracy is shown for 
comparison. 



 
 

 
 

3.2 Impact of number of template regions on accuracy 

Except for this section, all accuracy graphs presented in this paper arbitrarily used the Hamming distance from ten 
equally sized template regions to compute a neural network distance. The neural network contained one hidden layer 
with eight hidden nodes. Fig. 8 shows the impact that the number of template regions, used as input to the neural 
network, has on identification accuracy. The number of template regions was varied from two to twenty in steps of two. 
Additionally, tests with five and twenty five regions were added since they divided the fifty row template exactly. The 
entire iris template was used to form each curve; it was simply dissected into a differing number of equally sized 
horizontal regions. When the number of regions did not exactly divide the template size (i.e., 50 pixels divided into four 
regions), the region size was rounded up and allowed to overlap a bordering region. As the number of regions was 
varied, the neural network was trained with a multiple number of hidden nodes and the ROC curve from the best 
performing configuration was used. Only the ROC curves for the first six tests are presented in Fig. 8 to keep the plot 
uncluttered. As can be seen in the figure, dissecting a template into multiple regions offers an accuracy gain over 
computing Hamming distance over the entire template. All test runs outperformed the straight Hamming distance metric, 
except for the two region input. The accuracy of the neural network metric monotonically increased as the number of 
regions increased. All test configurations using greater than 10 regions exhibited diminishing returns.  
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Fig. 8.  Receiver Operating Curves showing accuracy achieved, using neural network distance, while varying the 

number of iris template regions (annuli within the iris) used as input to the neural network. Hamming distance 
accuracy is shown for comparison. 

3.3 Neural network accuracy on templates without eyelid/noise removal 

One of the promising aspects of individually weighting regions within an iris template is that areas that often exhibit 
noise, such as the eyelid and eyelash region, can be de-weighted. De-weighting noisy regions can possibly compensate 
for poor eyelid/eyelash localization and removal. The neural network distance applies statistically formed weights to 
each input region to form a weighted similarity metric. The error back-propagation training algorithm de-weights any 
input regions that do not contribute to a correct result. For the tests performed in this section, the Masek noise mask [6], 
which performed rudimentary eyelid, eyelash and reflection removal, was used. Both the directional energy and the 
wavelet based methods were used to test accuracy implications of adding the neural network distance as a similarity 



 
 

 
 

metric. Fig. 9 shows the directional energy algorithm accuracy with and without the addition of the neural network 
metric. The algorithm was tested with and without the use of the noise mask. All tests showed an increase in 
performance when the neural network metric was added. The most dramatic marginal accuracy increase occurred when 
the neural network metric was added to the configurations where the noise mask was not used. The neural network 
metric accuracy increase approached the accuracy increase achieved by using rudimentary eyelid, eyelash and reflection 
removal. The neural network metric also increased performance when the noise mask was used. 

Fig. 10 shows the wavelet based algorithm with and without the addition of the neural network metric. This algorithm 
was also tested without the use of the noise mask. For the results in Fig. 9 and Fig. 10, both algorithms used identical 
noise masks. All tests showed an increase in performance when the neural network metric was added. Again, the neural 
network metric accuracy increase approached the accuracy increase achieved by using rudimentary eyelid, eyelash and 
reflection removal. In both identification systems, the neural network metric also increased performance when the noise 
mask was used. 
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Fig. 9.  Receiver Operating Curves generated using the Ives et al directional energy based system, comparing 

identification accuracy of the neural network distance and Hamming distance. The curves demonstrate accuracy 
with and without the application of a noise mask. The noise mask performs rudimentary eyelid, eyelash and 
reflection removal when applied in the template matching process. 
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Fig. 10.  Receiver Operating Curves generated using the Masek wavelet based system, comparing identification 

accuracy of the neural network distance and Hamming distance. The curves demonstrate accuracy with and 
without the application of a noise mask. The noise mask performs rudimentary eyelid, eyelash and reflection 
removal when applied in the template matching process. 

3.4 Computational cost of the neural network metric 

As with any post-processing step, the computational cost of applying the neural network distance should be quantified. 
From equation 4, it can be seen that a neural network distance requires (M+1) additions, multiplications and hyperbolic 
tangents in the outer summation and (N+1) multiplications and additions within the inner summation. All of these 
calculations are performed on floating point variables. For an approximation of computational cost, the hyperbolic 
tangent will be treated as a simple operation equivalent to three multiplications. Though the tangent operation is not 
computationally equivalent to three multiplications on a Pentium processor, the tangent function could be implemented 
in a lookup table which would require one multiplication for scaling, casting to an integer and indexing into the lookup 
table. Equation 5 gives an approximate computational cost for implementing a neural network distance where M is the 
number of hidden nodes and N is the number of regions used as input to the network. 

2)1(5)1( ×+××+= NMnsComputatio     (5) 

The neural network configuration used in the majority of this research contained eight nodes in the hidden layer and the 
hamming distance from ten regions as input data. Applying a neural network metric with this configuration (M=8 and 
N=10) imposes an additional computational cost of 990 floating point operations to a Hamming distance based 
algorithm. The Hamming distance computation alone takes approximately 268800 integer calculations (one bitwise OR 
for the data and two bitwise ANDs for the masks) for a CASIA size (280 x 320) image. Adding a neural network 
distance computation adds approximately 0.37 percent overhead to the computational cost of performing a Hamming 
distance computation. Using the values M=6 and N=6, shown in sections 3.1 and 3.2 to work well, produces a 
computational overhead of 0.18 percent. The computational cost of the neural network distance is not based on image 
size, thus the percent overhead will decrease as image size increases. The additional accuracy introduced by the neural 
network distance has a computational cost of less than one percent additional processing.  



 
 

 
 

4. CONCLUSIONS 
Of the four metrics investigated, the neural network metric provided the largest accuracy increase. Using Hamming 
distance scores of regions within the iris template as input to the neural network distance increased identification 
accuracy with less than one percent additional processing. All configurations of the neural network distance matched or 
exceeded the accuracy achieved using Hamming distance alone. The near-optimal weighting, of template regions, 
performed by the neural network can largely compensate for poor eyelid/eyelash localization and removal. 
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