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ABSTRACT 
 
One of the first steps in iris recognition is isolating (or 
segmenting) the iris from an image of the subject’s eye area. 
This paper investigates new approaches for locating the 
pupil (inner) and limbic (outer) boundaries of the iris, 
namely a binary morphology and “center of mass” 
technique for the pupil boundary, and a local statistics 
approach for the limbic boundary. The methodology and 
results are presented using images from the University of 
Bath iris database. 

Index Terms – Image segmentation, image processing, 
image edge analysis.  

1. INTRODUCTION 
 
The iris is the colored portion of the eye surrounding the 
pupil. Its textured pattern is distinct from person to person, 
and distinct from left eye to right eye of the same person. 
High pattern variability, the stability of an iris over time, 
and the non-invasiveness of iris imaging make iris 
recognition a reliable and practical biometric. 

Figure 1 is a typical iris image. The only information 
used in iris recognition are pixels that actually fall within 

the iris, so the iris must first be segmented from the rest of 
the image before it can processed for comparison against 
other irises. Several means have been proposed to perform 
this segmentation [1]-[5]. In section 2 of this paper we 
present a binary morphology method using “center of mass” 
to locate the pupil boundary. In section 3 we describe a use 
of local statistics to locate the limbic boundary.  

Our test images are from the iris database collected at the 
University of Bath, U.K. [7]. These are 2000 near-infrared 
(NIR) images from 25 subjects (20 images per eye per 
subject). They are high resolution (1280x960 pixels), 
compressed with JPEG-2000 to 0.5 bits/pixel.  

We also refer the reader to [6], which presents the 
authors’ earlier results regarding the application of local 
statistics to both pupil and limbic boundary determination.  

 
        2.  PUPIL SEGMENTATION 

 
     In an iris image, the pupil typically appears as a large 
dark mass, the largest homogeneous region of dark pixels in 
the image. Our algorithm takes advantage of this fact by 
isolating the darker regions of the image to create a binary 
image, and then performing binary morphology in order to 
determine which region is actually the pupil.  We remark 
that no assumptions are made as to where the pupil lies 
within the image. Also, since all of the images we consider 
are orthogonal (meaning the eye peers straight into the 
camera, as in Fig. 1), we assume for convenience that pupils 
(and later, irises also) are circular. The circularity 
assumption is not actually necessary for binary morphology, 
but we defer further discussion of the issue until sections 4 
and 5. The process to detect the pupil is as follows. 
      In some cases, because of the illumination conditions or 
for other reasons, the iris may appear darker than expected 
so that the boundary between pupil and iris is not very 
sharp. To sharpen it, we perform adaptive histogram 
equalization on the image before any segmentation 
processing begins. In addition, if needed to speed up the 
processing, we can downsample the image. 
      Next we use a grayscale threshold to binarize the image; 
values below the threshold (we use a value of 50 for this 
database) are changed to 1, those above the threshold Figure 1: Iris image from the Univ. of Bath database. 



become 0. Then we apply binary morphology: (1) a fill, to 
fill in holes in the masses; (2) an erosion, to get rid of most 
or all of the noise; and (3) a dilation to restore the mass(es) 
after erosion. This process is displayed in Fig. 2.  
      If one mass remains, this is the pupil; if all masses have 
been removed, then the threshold is raised and we try again. 
The more complex case is when two or more masses 
remain, which can result from a dark eyebrow or shadow in 
the original image. In this case, we use the perimeter and 
major/minor axis length of each mass to determine whether 
it is the pupil. An eyebrow or shadow, for instance, usually 
has a large perimeter, or a very large ratio of major axis 
length to minor axis length, as compared with a circular 
pupil. On the other hand, masses from other types of noise 
have perimeters smaller than that of the pupil.  
      Once the pupil is determined, we compute its “center of 
mass,” and its radius. (If the pupil is not circular, the radius 
corresponds to the radius of the smallest circle which 
encloses it.) We pass the location of the center to the limbic 
boundary detection algorithm. 
 

3. LIMBIC BOUNDARY SEGMENTATION 
 
The limbic boundary is more difficult to locate than the 
pupil boundary. One reason is that the transition from the 
iris to the sclera (the white part of the eye) is more gradual 

than the transition from the pupil to the iris. Moreover, there 
may be eyelashes and/or eyelids obscuring portions of the 
iris. Therefore, to improve the robustness of our method, we 
adopt the common practice of using the pupil center as an 
approximate center for the limbic boundary circle. (The two 
boundaries are in general not exactly concentric, so we will 
incorporate appropriate adjustments.) The determination of 
the limbic boundary is otherwise independent from that of 
the pupil boundary. 

The method of local statistics locates the limbic 
boundary by exploiting statistical properties of the grayscale 
values within small neighborhoods of pixels. We begin by 
defining the relevant terms related to statistical data 
analysis. The variance σ2 on data values X is defined by 

 
  2 2( )E X Xσ = − ,                              (1)                     

where E is the expectation operator and X is the mean. The 
standard deviation is σ, the square root of the variance. We 
also define the kurtosis:  
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Kurtosis is a measure of how peaked the data is. The 
kurtosis of a standard normal distribution of values (σ = 
1.0) is 3.0, and distributions that are “flatter” and less prone 
to outliers have kurtosis less than 3.0 while those 
distributions that are more peaked and more prone to 
outliers have kurtosis greater than 3.0.  

Returning to Fig. 1, we consider small (overlapping) 
neighborhoods of pixels. Neighborhoods lying within areas 
of homogeneous texture, say inside the pupil or sclera, often 
have relatively uniform grayscale values. However, the iris 
has a more mottled appearance, so that neighborhoods lying 
within the iris should contain grayscale values with different 
local statistical properties. Likewise, neighborhoods 
overlapping the pupil or limbic boundary should have 
statistical properties distinct from the interior of the pupil, 
iris, or sclera.  

Experimentally we have found that the local kurtosis was 
the best statistical parameter for locating the limbic 
boundary. (By way of comparison, in [6] we used the local 
standard deviation for locating the pupil boundary.) We use 
the local kurtosis to create a new image, Fig. 3, as follows: 
each pixel in Fig. 3, say at row m and column n, reflects the 
kurtosis value of the 5x5 pixel neighborhood centered at 
row m, column n in the original image.  

Observe that the grayscale values near the limbic 
boundary are relatively stable in small neighborhoods: 
locally they are more or less uniformly gray, as opposed to 
the salt-and-pepper appearance elsewhere. Unfortunately, 
the relevant pixel values at the boundary are not sufficiently 
uniform (over various sections of the boundary and across 
different images) to allow us to simply extract pixels close 
to a certain value. Instead we create the binary image in Fig. 

Figure 2: The pupil segmentation process: original image 
(top left); adaptive histogram equalization (top right); 
thresholding (second row left); erosion and dilation (second 
row right); segmentation result (bottom). 



4 using another 5x5 window: we assign a value of 1 (white) 
to pixels for which kurtosis values within a 5x5 
neighborhood vary by no more than half the standard 
deviation over all values in Fig. 3. Although this leaves us 
with a fair amount of noise, the limbic boundary is easily 
discernable from the two white arcs.  

Now, partly for the sake of processing speed, we use our 
information about the pupil center. The pupil is sometimes 
off-center relative to the iris, being slightly closer to the 
nose. Thus it makes sense to consider multiple possible 
centers for the limbic boundary. In addition to the pupil 
center, we consider the pupil center shifted by 5 pixels and 
10 pixels to either the left or right, away from the nose. For 
each center, we generate a family of overlapping concentric 
annuli, all having a width of 10 pixels (the outer radius 
minus inner radius), and with the radii increasing in 
increments of 8. Finally, the limbic boundary (see Fig. 5) is 
taken to be the annulus containing the highest percentage of 

ones (white) when “overlaid” with the image in Fig. 4. 
(Actually, the annulus has width, so we arbitrarily declare 
the limbic boundary to be its outer edge. We could just as 
well use the inner edge or the middle.) The final 
segmentation of the iris image from Fig. 1 is shown in Fig. 
6. Further processing, such as edge detection, can then be 
applied to further remove noise such as eyelashes or eyelids. 

A few remarks are in order. First, the neighborhood 
sizes, the factor 1/2 multiplied against the standard 
deviation, the annuli widths, the increments of the radii, and 
the adjustment to the limbic circle center are all of course 
somewhat arbitrary. Moreover, the location of the limbic 
boundary is somewhat subjective. For these reasons we 
make no claim that we have determined the optimal 
parameters for every user or database. This is actually an 
advantage, since the parameters can be easily adjusted to 
prioritize speed or precision, and adjusted according to the 
properties of a particular camera.  

Figure 3: Local kurtosis image. 

Figure 4: Binary image derived from kurtosis image. 

Figure 5:  Best-fit annulus overlaid with Figure 4. 

Figure 6: Segmentation result for Figure 1. 



4. RESULTS AND CONCLUSIONS 
 
The pupil center was determined correctly in approximately 
98.7% of the University of Bath images. The radius was 
more problematic, because it is fairly common 
(approximately half of the Bath images) for the pupil to be 
slightly oblong, even when the person is looking directly at 
the camera. The pupil segmentation was correct in about 
96% of images with a round pupil; in the rest of those 
images, the size of the pupil was overestimated by varying 
amounts. For images with oblong pupils, the diameter of the 
boundary circle corresponded in nearly all cases to the 
length of the major axis. Thus the pupil boundary circle 
enclosed a small section of the iris.  

The computation of the limbic boundary turned out to be 
very robust: as long as the pupil center was located more or 
less correctly (even if the pupil was not round), there were 
no major errors in the limbic boundary. This was true even 
when eyelashes and eyelids obscured a significant portion 
of the top and/or bottom of the iris, because the limbic 
boundary arcs as in Fig. 4 are strong enough to ensure that a 
good annulus is easy to identify.  

The minor errors that occurred are as follows: in a small 
number of images the limbic boundary excluded a small 
amount of the iris. In about 75-125 images the boundary 
enclosed a slight amount of the sclera. These errors can 
occur, for example, when the limbic center shift is too 
small. This error is significantly reduced if we allow for 
larger shifts, for instance 15 or 20 pixels, and also allow for 
vertical shifts. Another means to reduce inclusion of the 
sclera is to choose the limbic boundary to be the inner edge 
of the annulus in Fig. 5. However, in doing so, one can 
exclude some iris pixels which fall outside that edge.   

All in all, the limbic boundary is somewhat subjective, 
and the definitions of “error” and “significant error” are 
likewise subjective. When the limbic boundary was not 
where an observer would place it, the amount of enclosed 
sclera (or missing iris) was in each case, small.  
 

5. FURTHER REMARKS  
  

The binary morphology process does not require the pupil 
to be circular; the pupil mass we produce is, in general, the 
actual shape of the pupil. We enclosed the pupil in a circle 
at the end of the morphology process to eliminate some 
segmentation errors which arose from specular reflection 
(glare spots) near the edge of the pupil. We are currently 
investigating adjustments to the morphology technique 

which eliminate glare spots without resorting to a circularity 
model. 

    A related area of investigation is the application of 
morphology and local statistics to segmentation of non-
orthogonal iris images. This would certainly require a non-
circular model (or better, a model-free approach) for both 
the pupil and limbic boundary segmentation.   

Another area of continuing work regards processing 
speed: this segmentation algorithm was written for 
MATLAB, and we are in the process of converting to C. For 
iris recognition to perform well, it is desirable that the entire 
process (i.e. image capture, segmentation, feature 
extraction, and comparison against a database) take at most 
a few seconds. 
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