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ABSTRACT 
 
A novel approach to iris recognition is proposed in this paper. It differs from traditional iris recognition systems in that 
it generates a one-dimensional iris signature that is translation, rotation, illumination and scale invariant. The Du 
Measurement was used as a matching mechanism, and this approach generates the most probable matches instead of 
only the best match. The merit of this method is that it allows users to enroll with or to identify poor quality iris images 
that would be rejected by other methods. In this way, the users could potentially identify an iris image by another level 
of analysis. Another merit of this approach is that this method could potentially improve iris identification efficiency. In 
our approach, the system only needs to store a one-dimensional signal, and in the matching process, no circular rotation 
is needed. This means that the matching speed could be much faster. 
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1. INTRODUCTION 
 
Biometrics uses unique and measurable physical, biological, or behavioral characteristics to establish identification, 

and to perform identity verification or automated recognition of a person [1-5]. The three tasks of biometrics [1-2] are:  
• Verification: “Are you who you say you are?”  
• Identification: “You are in my database, can I find you?” 
• Watchlist: “Are you in my database? If so, who are you?” 

“Watchlist” refers to the act of scrutinizing individuals to determine if they belong to a selected group, such as 
criminals. Within these three tasks, identification (one-to-few match) is more difficult than verification (one-to-one 
match), while watchlist (one-to-many) would be the most difficult. 

The iris is a protected internal organ whose random texture is stable throughout life [1-2]. Compared with other 
biometric features such as face and fingerprint, iris patterns are more stable and reliable [1-2]. Iris recognition systems 
are non-invasive to their users [1-11], but require a cooperative subject. For this reason, iris recognition is usually used 
for verification or identification purpose, rather than for watchlist.  

The key step in many current iris pattern recognition algorithms is to transfer the iris pattern into a two-dimensional 
code [6-9]. To eliminate the effect of eye tilt, circular rotation of the iris pattern is usually necessary in iris matching 
and identification algorithms [6-7,9-10].  Among them, Daugman’s 2-D Gabor wavelet approach has been successfully 
tested using a large-scale iris database and has been commercialized by Iridian [11].  
      In this paper, we propose a novel approach for iris identification. We develop gray scale invariant Local Texture 
Patterns (LTP) to generate a one-dimensional signature for each iris image, and use an Information Divergence-Based 
Du measurement developed by Du et al [12] to measure the similarity between the test iris signature and those 
signatures in the database. In contrast to traditional iris recognition methods [6-10], we compare the input iris image to 
all iris patterns in the database and list them according to similarity. As a result, we generate the top ten closest 
matches.  This method could potentially improve the iris identification computational efficiency, since the system only 
needs to store a one-dimensional signal, and in the matching process, no circular rotation is needed. 

Portions of this research use the iris image database collected by the Institute of Automation, Chinese Academy of 
Sciences (CASIA) [20]. The organization of this paper is as follows: Section 2 introduces the Du measurement; Section 
3 develops the gray scale invariant LTP; Section 4 discusses the system architecture; Section 5 shows the experimental 
results; and Section 6 draws conclusions.  
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2. THE DU MEASURE 
 

The Spectral Angle Mapper (SAM) [12,13,14] has been widely used as a spectral similarity measure for 
multi/hyper-spectral signals [12-14]. The SAM measures the angle between the spectral vectors  and 

and is given by: 
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The Spectral Information Divergence (SID) [12,14] between vectors r and s is defined as: 
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Here  is the relative entropy (also known as Kullback-Leibler information measure) [12,14] of q with respect 
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Recently, Du et al [12] developed the Du measure, also known as (SID,SAM)-mixed  measure. It is defined as: 
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The Du measure has been shown to take advantage of the strengths of both SID and SAM [12], and is used in Section 4 
as a key to measure the similarity between two iris signatures.  
 

3. GRAY SCALE INVARIANT LOCAL TEXTURE PATTERNS (LTP) 
 

Analyzing iris patterns is a key step for iris pattern recognition and verification. A major problem in analyzing iris 
patterns (iris textures) is that they are often not uniform due to variations in orientation, scale, contrast, or illumination. 
The problem of orientation variations will be solved by generating a one-dimensional signature and is described in 
detail in Section 4. The problem of scale variations will be solved by the Mask Generation Module described in Section 
4.2. The problem of contrast variations will be solved by using the Du measure described in Section 2 and the details of 
the application of the Du measure for iris identification are described in Section 4. To solve the problem of illumination 
(gray scale) variations, we designed the gray scale invariant Local Texture Patterns (LTP). This is a very simple method 
that could be applied to non-iris gray scale imagery for texture analysis as well.  

Let T be a set of pixels in an X-by-Y window and let B be the center subset of x-by-y pixels in window T, where X 
> x and Y>y (Fig. 1). We subtract the mean of the gray value of the window T from the gray values of the pixels in the 

 
 
Figure 1. Window T and Window B used in calculating the LTP. 
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window B to form the LTP for the pixels of set B. The LTP of a pixel at coordinate (i,j) inside window B is given as: 

ij Tij
LTP I m= − , ijI B∈      (4) 

where Iij is the gray scale value of the pixel (i,j) in B, and mT is the mean gray scale value inside window T. The reason 
for selecting window T to be slightly larger than window B is so that the local mean mT be can be a better 
approximation to the true mean value and is less affected by noise. In addition, by computing LTPs using an 
overlapping T window, boundary discontinuities are avoided.  Examples of the overlapping windows are given in Fig. 
2. 

 
(a)                                                      (b) 

 
Figure 2. Overlapping T windows. 

 
4. IRIS RECOGNITION SYSTEM ARCHITECTURE 

 
The proposed system is comprised of the following modules: Preprocessing, Mask Generation, LTP, Iris Signature 

Generation, Enrollment, Iris Identification, and Iris Signature Database. The system architecture is depicted in Fig. 3, 
and is described in the following. 

 
4.1. Preprocessing Module 

 
The Preprocessing Module locates the various components of the iris boundary. In particular, we find the limbic 

(outer) boundary of the iris, the pupillary (inner) boundary of the iris, and the eyelids. As the first step, we discard every 
other row and column of the original iris image to reduce it (Fig. 4(a)) to ¼ of the original size to speed up the 
processing (Fig. 4(b)). The Canny method [15] was applied to this image for edge detection. The edge image was then 
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Figure 3. Iris Identification System Architecture 
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thresholded and is shown in Fig. 4(c). There 
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Figure 5. Iris Boundary Detection. 
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discarded. 
 

4.2. Mask Generation Module 
 
The size of the same iris taken at different times may be variable in the image as a result of changes in the camera-

to-face distance [7]. Due to stimulation by light or for other reasons the pupil may be constricted or dilated. These 
factors will change the iris resolution, and the actual distance between the pupillary and the limbic boundary.  

To solve these problems, the iris image is processed [7,9] to ensure the accurate location of the virtual circle and to 
fix the resolution. We normalize this distance to be a constant L  pixels for all iris images. The value of L  should be 
decided based on the overall resolution of the iris images in the database. In our experiments, the iris images are all 
280-by-320 pixels. The distance from the pupil to the limbic usually fell in the range of 55~70 pixels. In this case, L  
should be some value between 50 and 60, because it would be easier to shrink the image size via averaging pixel values 
than to enlarge the image via interpolating the pixels (which may introduce false patterns).  In our case, we select 
L =56. 

The iris area is transformed to the resolution invariant polar coordinates (which are different from the standard 
polar coordinates used in Section 4.1) [7]. For each pixel in the original iris image located at rectangular coordinates 
(xi,yi), we compute its polar coordinates (ri,θi) as: 
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At the same time, the boundary positions are transferred to the resolution invariant polar coordinates. Fig. 6(a) shows 
the generated iris mask, where white represents the locations of iris pattern areas, and black represents the non-iris 
pattern areas, such as pupil pixels, eyelids, and eyelashes. Fig. 6(b) shows the resulting iris patterns after applying the 
mask. Note that the mask is resolution (scale) invariant.  
 
 
4.3.  LTP Module 

 
After applying the mask to the iris pattern in the invariant resolution polar coordinates (Fig. 6(b)), the LTP Module 

generates the local iris patterns using Eq. (4). We set the size of window T to be 15-by-7 and window B to be 9-by-3. 
Note that the left-most column of the image in Fig. 6(b) is connected to the right-most column, so there are no actual 
left or right edges that would introduce artifacts. To reduce the effect of non-iris pixels (they appear black in Fig. 6(b)), 
if more than 50% of pixels in window B or more than 60% of pixels in window T are non-iris patterns, we discard them 
as non-iris pattern areas.  

4.4. Iris Signature Generation Module  

   
(a) The resolution invariant mask                 (b) The resolution invariant iris patterns 

 
Figure 6. Iris Mask and Iris Patterns. 

 
After local iris patterns were calculated by the LTP Module, the Iris Signature Generation Module will build a one-

dimensional signature for each iris image by averaging the LTP values of each row. If more than 60% of the pixels in a 
row are non-iris, we set the signature value for that row to be –1. Since the iris-patterns in the top and bottom three rows 
are usually very noisy, we removed these six rows when building the iris pattern. Fig. 7 shows the one-dimensional 
signature for the iris image in Fig. 4(a).  



Presented at SPIE Defense and Security Symposium, Orlando, FL 2004 

In Fig. 4(a), observe that the iris pixels near the pupillary area have more variation than iris pixels farther from the 
pupil. In Fig. 7, this feature is characterized by relatively high values of LTP along the left side of the plot (representing 
areas closer to the pupil): these values are the average LTP values of each row in the resolution invariant polar images.  
 

4.5. Enrollment Module 
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Figure 7. The one-dimensional signature for the iris image in Fig. 4(a). 

 
For an iris pattern to be recognizable in the system, we first need to enroll the iris pattern in the database. 

Enrollment usually takes multiple iris images of the same iris to register and generate the enrollment iris patterns. In 
commercial iris recognition systems, such as Panasonic Authenticam [19], iris enrollment requires several (4 for the 
Authenticam) high quality iris images. Here, our system only uses 3 iris images. In the CASIA iris database, each iris 
has 7 images. We take the first 3 as enrollment images, compute the three iris signatures for each iris pattern, and 
average them to get its enrollment iris signature (Fig. 8). 

Since the iris signatures are not directly related to the angles of the iris patterns, eye restoration would not affect the 
one-dimensional signal. In this way, we invented a rotation invariant iris signature. 

 

4.6. Iris Signature Database 
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Figure 8. The iris signatures and their enrolled signature. Iris Signature 1, 2, and 3 
are from iris images 002_1_1, 002_1_2, and 002_1_3 in the CASIA database. 

 
Enrolled iris signatures were stored in the Iris Signature Database. The CASIA database contains imagery for a 

total of 108 different irises. We enrolled all of these 108 irises (overall, using 324 iris images for enrollment) and stored 
them in the database.  
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4.7. Iris Identification Module 
 
When an iris image is presented for identification, its iris signature is generated by the Iris Signature Generation 

Module, and we attempt to match it with the enrolled iris signatures inside the database. The matching score is based on 
the Du measurement [12] introduced in Section 2. The output of this module is the 10 closest matches from the 
database. 

 
5. EXPERIMENTAL RESULTS 

 
In commercial iris recognition systems, the system will automatically reject unclear iris images and requires the eye 

to be open wide, using video technology to select the best iris images for enrollment. Images such as those shown in 
Fig. 9(a-c) may not be acceptable. Because we are using the CASIA database, we cannot control the quality of the 
images. However, our system would use the images in Fig. 9(a-c) anyway. The resulting iris signature is shown in Fig. 
9(d).  

In Fig. 9(a)-(c), the quality of the three enrollment iris images is poor. The upper eyelids and eyelashes have hidden 
the upper half and a portion of the lower half iris patterns. In Fig. 9(a) and (c), the reflectance of the lower eyelids has 
an illumination effect on nearby iris patterns. As a result, the iris patterns in the outer circle have been hidden largely by 
the eyelids, eyelashes or affected by the abnormal illumination. In  Fig. 9(d), for iris signature 2 and 3, the LTP is –1 
when the distance to pupil is larger than 42. This is reasonable because we cannot get 40% or more valid iris patterns in 
these iris circles. Because of this, the resulting signature will be same as that of iris signature 1 in these areas. Also, we 
found large variances in the iris signature near the pupillary areas (distance less than 3), especially for iris signature 1. 
In Fig. 9(a), we notice that the eye is more closed than in the other images. This means that more iris patterns in this 
area have been hidden by eyelashes or eyelids. If we enlarge the iris image (Fig. 10) and look closely, we see there are 
some smoother iris pattern areas (inside the white elliptic areas) that have been hidden or affected by nearby eyelashes. 
For this reason, those areas are discarded when generating the iris signature for Fig. 9(a), which results in a higher 
Average Row LTP values for Fig. 9(a) near the pupillary areas. Overall, the iris images are very similar to each other.   

 

               
  (a) Enrollment image 1                     (b) Enrollment image 2                         (c) Enrollment image 3 
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Figure 9. An example of poor enrollment images and their iris signatures. (Enrollment 
Images 1, 2, and 3 are Iris images 004_1_1, 004_1_2, and 004_1_3 in CASIA database. 
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Fig. 11 demonstrates that each iris pattern has its own iris signature. Eight signatures are presented along with one 

of the irises used to calculate it. Comparing the images of the eight irises, the distinct features of individual irises are 
apparent.   

        

 
 

Figure 10. Analysis of Fig. 9(a) 

Iris Pattern 1 (Generated from iris images 007_1_1, 007_1_2, and 007_1_3) 

       
Iris Pattern 2 (Generated from iris images 009_1_1, 009_1_2, and 009_1_3) 

          
Iris Pattern 3 (Generated from iris images 012_1_1, 012_1_2, and 012_1_3) 

 
Figure 11. Iris images and their iris signatures. 
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Iris Pattern 4 (Generated from iris images 013_1_1, 013_1_2, and 013_1_3) 

   
Iris Pattern 5 (Generated from iris images 019_1_1, 019_1_2, and 019_1_3) 

   
Iris Pattern 6 (Generated from iris images 032_1_1, 032_1_2, and 032_1_3) 

   
Iris Pattern 7 (Generated from iris images 033_1_1, 033_1_2, and 033_1_3) 

    
Iris Pattern 8 (Generated from iris images 060_1_1, 060_1_2, and 060_1_3) 

 
Figure 11 (continued). Iris images and their iris signatures  
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Overall this database contains images of 108 different iris patterns. There are seven iris images for each iris pattern. 

We used the first three iris images of each pattern to enroll and generate enrollment iris signatures, and 356 iris images 
to test the algorithm. Using match ranking 1-10 as a measure, all of the tested irises correctly fell into the top 10 
ranking. Of these, over 97% fell into the top 5 ranking. The lowest rank was 8; the average rank was 1.6.  

 
6. CONCLUSIONS 

 
A novel approach to iris identification is proposed. It differs from current approaches to iris recognition in several 

ways. It generates a one-dimensional iris signature that is translation, rotation, illumination and scale invariant. In 
general, iris recognition could achieve the highest recognition rate among biometrics technologies. However, a weak 
point of iris recognition is that it needs the users’ full cooperation. The merit of our method is that it allows users to 
enroll poor quality iris images that would be rejected by other methods. In addition, this approach generates a list of 
possible matches instead of only the best match. In this way, the users could potentially identify the iris image by 
another level of analysis (such as using traditional iris recognition algorithm for more accurate iris identification). 
Another merit of our method is that it would allow the iris recognition system to be more tolerable of noise (such as 
glare introduced by contact lenses or eye glasses). Another merit of this approach is that this method could potentially 
improve iris identification process computational efficiency. In our approach, the system only needs to store a one-
dimensional signal vice a two-dimensional image. Also, in the match processing, no circular rotation is needed, so that 
matching could be much faster. This work has been filed for patent. 
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