
 1

Chapter 1
The Binary Number System

1. Why Binary?

The number system that you are familiar with, that you use every day, is the decimal number system, also
commonly referred to as the base-10 system. When you perform computations such as 3 + 2 = 5, or 21 –
7 = 14, you are using the decimal number system. This system, which you likely learned in first or second
grade, is ingrained into your subconscious; it’s the natural way that you think about numbers. Of course it
is not just you: It is the way that everyone thinks—and has always thought—about numbers and
arithmetic. Evidence exists that Egyptians were using a decimal number system five thousand years ago.
The Roman numeral system, predominant for hundreds of years, was also a decimal number system
(though organized differently from the Arabic base-10 number system that we are most familiar with).
Indeed, base-10 systems, in one form or another, have been the most widely used number systems ever
since civilization started counting.

In dealing with the inner workings of a computer, though, you are going to have to learn to think in a
different number system, the binary number system, also referred to as the base-2 system.

Before considering why we might want to use a different number system, let’s first consider: Why do we
use base-10? The simple answer: We have 10 fingers. Before the days of calculators and computers, we
counted on our hands (many of us still do!).

Consider a child counting a pile of pennies. He would begin: “One, two, three, …, eight, nine.” Upon
reaching nine, the next penny counted makes the total one single group of ten pennies. He then keeps
counting: “One group of ten pennies… two groups of ten pennies… three groups of ten pennies … eight
groups of ten pennies … nine groups of ten pennies…” Upon reaching nine groups of ten pennies plus
nine additional pennies, the next penny counted makes the total thus far: one single group of one hundred
pennies. Upon completing the task, the child might find that he has three groups of one hundred pennies,
five groups of ten pennies, and two pennies left over: 352 pennies.

More formally, the base-10 system is a positional system, where the rightmost digit is the ones position
(the number of ones), the next digit to the left is the tens position (the number of groups of 10), the next
digit to the left is the hundreds position (the number of groups of 100), and so forth. The base-10 number
system has 10 distinct symbols, or digits (0, 1, 2, 3,…8, 9). In decimal notation, we write a number as a
string of symbols, where each symbol is one of these ten digits, and to interpret a decimal number, we
multiply each digit by the power of 10 associated with that digit’s position.

For example, consider the decimal number: 6349. This number is:

 6 3 4 9 = 6 10 3 10 4 10 9 103 2 1 0⋅ + ⋅ + ⋅ + ⋅

103 102 101 100
 position position position position

 (i.e., thousands position) (i.e., hundreds position) (i.e., tens position) (i.e., ones position)

 2

There is nothing essentially “easier” about using the base-10 system. It just seems more intuitive only
because it is the only system that you have used extensively, and, again, the fact that it is used extensively
is due to the fact that humans have 10 fingers. If humans had six fingers, we would all be using a base-6
system, and we would all find that system to be the most intuitive and natural.

So, long ago, humans looked at their hands, saw ten fingers, and decided to use a base-10 system. But
how many fingers does a computer have?

Consider: Computers are built from transistors, and an individual transistor can only be ON or OFF (two
options). Similarly, data storage devices can be optical or magnetic. Optical storage devices store data in
a specific location by controlling whether light is reflected off that location or is not reflected off that
location (two options). Likewise, magnetic storage devices store data in a specific location by
magnetizing the particles in that location with a specific orientation. We can have the north magnetic pole
pointing in one direction, or the opposite direction (two options).

Computers can most readily use two symbols, and therefore a base-2 system, or binary number system, is
most appropriate. The base-10 number system has 10 distinct symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. The
base-2 system has exactly two symbols: 0 and 1. The base-10 symbols are termed digits. The base-2
symbols are termed binary digits, or bits for short. All base-10 numbers are built as strings of digits (such
as 6349). All binary numbers are built as strings of bits (such as 1101). Just as we would say that the
decimal number 12890 has five digits, we would say that the binary number 11001 is a five-bit number.

The point: All data in a computer is represented in binary. The pictures of your last vacation stored on
your hard drive—it’s all bits. The YouTube video of the cat falling off the chair that you saw this
morning—bits. Your Facebook page—bits. The tweet you sent—bits. The email from your professor
telling you to spend less time on vacation, browsing YouTube, updating your Facebook page and sending
tweets—that’s bits too. Everything is bits.

To understand how computers work, you have to speak the language. And the language of computers is
the binary number system.

2. The Binary Number System

Consider again the example of a child counting a pile of pennies, but this time in binary. He would begin
with the first penny: “1.” The next penny counted makes the total one single group of two pennies. What
number is this?

When the base-10 child reached nine (the highest symbol in his scheme), the next penny gave him “one
group of ten”, denoted as 10, where the “1” indicated one collection of ten. Similarly, when the base-2
child reaches one (the highest symbol in his scheme), the next penny gives him “one group of two”,
denoted as 10, where the “1” indicates one collection of two.

Back to the base-2 child: The next penny makes one group of two pennies and one additional penny:
“11.” The next penny added makes two groups of two, which is one group of 4: “100.” The “1” here
indicates a collection of two groups of two, just as the “1” in the base-10 number 100 indicates ten groups
of ten.

Upon completing the counting task, base-2 child might find that he has one group of four pennies, no
groups of two pennies, and one penny left over: 101 pennies. The child counting the same pile of pennies

 3

in base-10 would conclude that there were 5 pennies. So, 5 in base-10 is equivalent to 101 in base-2. To
avoid confusion when the base in use if not clear from the context, or when using multiple bases in a
single expression, we append a subscript to the number to indicate the base, and write:

 10 25 101=

Just as with decimal notation, we write a binary number as a string of symbols, but now each symbol is a
0 or a 1. To interpret a binary number, we multiply each digit by the power of 2 associated with that
digit’s position.

For example, consider the binary number 1101. This number is:

1 1 0 1 = 3 2 1 0

101 2 1 2 0 2 1 2 13⋅ + ⋅ + ⋅ + ⋅ =

 23 22 21 20
 position position position position

(i.e., eights position) (i.e., fours position) (i.e., twos position) (i.e., ones position)

Since binary numbers can only contain the two symbols 0 and 1, numbers such as 25 and 1114000 cannot
be binary numbers.

We say that all data in a computer is stored in binary—that is, as 1’s and 0’s. It is important to keep in
mind that values of 0 and 1 are logical values, not the values of a physical quantity, such as a voltage. The
actual physical binary values used to store data internally within a computer might be, for instance, 5 volts
and 0 volts, or perhaps 3.3 volts and 0.3 volts or perhaps reflection and no reflection. The two values that
are used to physically store data can differ within different portions of the same computer. All that really
matters is that there are two different symbols, so we will always refer to them as 0 and 1.

A string of eight bits (such as 11000110) is termed a byte. A collection of four bits (such as 1011) is
smaller than a byte, and is hence termed a nibble. (This is the sort of nerd-humor for which engineers are
famous.)

The idea of describing numbers using a positional system, as we have illustrated for base-10 and base-2,
can be extended to any base. For example, the base-4 number 231 is:

2 3 1 = 2 1 0

102 4 3 4 1 4 45⋅ + ⋅ + ⋅ =

 24 14 04
 position position position

 (i.e., sixteens position) (i.e., fours position) (i.e., ones position)

 4

3. Converting Between Binary Numbers and Decimal Numbers

We humans about numbers using the decimal number system, whereas computers use the binary number
system. We need to be able to readily shift between the binary and decimal number representations.

Converting a Binary Number to a Decimal Number

To convert a binary number to a decimal number, we simply write the binary number as a sum of powers
of 2. For example, to convert the binary number 1011 to a decimal number, we note that the rightmost
position is the ones position and the bit value in this position is a 1. So, this rightmost bit has the decimal
value of 01 2⋅ . The next position to the left is the twos position, and the bit value in this position is also a
1. So, this next bit has the decimal value of 11 2⋅ . The next position to the left is the fours position, and
the bit value in this position is a 0. The leftmost position is the eights position, and the bit value in this
position is a 1. So, this leftmost bit has the decimal value of 31 2⋅ . Thus:

 3 2 1 0

2 101011 1 2 0 2 1 2 1 2 8 2 1 11= ⋅ + ⋅ + ⋅ + ⋅ = + + =

Example

Express the binary number 110110 as a decimal number.

Solution: 5 4 3 2 1 0
2 10110110 1 2 1 2 0 2 1 2 1 2 0 2 54= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

As a shorthand means of converting a binary number to a decimal number, simply write the position value
below each bit (i.e., write a “1” below the rightmost bit, then a “2” below the next bit to the left, then a “4”
below the next bit to the left, etc.), and then add the position values for those bits that have a value of 1.

For example, to convert the binary number 10101 to decimal, we annotate the position values below the
bit values:

 1 0 1 0 1
 16 8 4 2 1

Then we add the position values for those positions that have a bit value of 1: 16 + 4 + 1 = 21. Thus

 2 1010101 21=

Example

Express the binary number 100000 as a decimal number.

Solution:

1 0 0 0 0 0
32 16 8 4 2 1

 The only position that has a bit value of 1 is the position corresponding to 32. Thus 2 10100000 32=

 5

Given a binary number, you can now convert it to the equivalent decimal number. We will now present
two different methods for converting in the other direction: from decimal to binary. The first method is
more intuitive. The second method is much more readily adaptable to programming on a computer.

Converting a Decimal Number to a Binary Number: Method 1

The first method of converting from a decimal number to a binary number entails expressing the decimal
number as a sum of powers of 2. To convert the decimal number x to binary:

Step 1. Find the highest power of two less than or equal to x. The binary representation will have a one

in this position. Denote the value of this highest power of 2 as y.

Step 2. Now subtract this power of two (y) from the decimal number (x), denoting the result as z:

.z x y= −

Step 3. If 0z = , you are done. Otherwise, let x z= and return to Step 1 above.

Example

Convert the decimal number 78 to binary.

Solution: Think to yourself: “Self, what is the largest power of 2 that is less than or equal to 78?”

52 32= is a power of 2 that is less than 78, but is it the largest? Let’s try 62 .

62 64= is a power of 2 that is less than 78, but is it the largest? Let’s try 72 .

72 128= is a power of 2 larger than 78.

So, the largest power of 2 that is less than 78 is 62 . Thus the binary representation of 78 will have a one
in the 62 64= position:

 1
____________ ___________ ____________ ___________ __________ _________ ________

62 64= 52 32= 42 16= 32 8= 22 4= 12 2= 02 1=

Subtracting 64 from our number 78 gives 78 64 14− = . Thus, 14 is now the number we are working with.

What is the largest power of 2 that is less than or equal to 14?

The answer: 32 8= . So, the binary representation of 78 will have a one in the 32 8= position:

 1 1
____________ ___________ ____________ ___________ __________ _________ ________

62 64= 52 32= 42 16= 32 8= 22 4= 12 2= 02 1=

 6

Now, subtracting 8 from our number 14 gives 14 8 6− = . Thus, 6 is now the number we are working with.

What is the largest power of 2 that is less than or equal to 6?

The answer: 22 4= . So, the binary representation of 78 will have a one in the 22 4= position:

 1 1 1
____________ ___________ ____________ ___________ __________ _________ ________

62 64= 52 32= 42 16= 32 8= 22 4= 12 2= 02 1=

Now, subtracting 4 from our number 6 gives 6 4 2− = . Thus, 2 is now the number we are working with.

What is the largest power of 2 that is less than or equal to 2?

The answer: 12 2= . So, the binary representation of 78 will have a one in the 12 2= position:

 1 1 1 1
____________ ___________ ____________ ___________ __________ _________ ________

62 64= 52 32= 42 16= 32 8= 22 4= 12 2= 02 1=

Now, subtracting 2 from our number 2 gives 0, so we are done. Filling in zeros in all remaining position
(i.e., all positions that do not have a 1), we have our answer: The decimal number 78 in binary is

 1 0 0 1 1 1 0
____________ ___________ ____________ ___________ __________ _________ ________

62 64= 52 32= 42 16= 32 8= 22 4= 12 2= 02 1=

or, 10 278 1001110=

Example

Convert the decimal number 201 to binary.

Solution:
The largest power of 2 less than or equal to 201 is 72 128= , so there will be a 1 in the 72 position.
Subtracting 128 from 201 leaves 73.

The largest power of 2 less than or equal to 73 is 62 64= , so there will also be a 1 in the 62 position.

Subtracting 64 from 73 leaves 9. The largest power of 2 less than 9 is 32 8= , so there will be a 1 in the

32 position.

Subtracting 8 from 9 leaves 1, so there is a 1 in the 02 position.

Subtracting 1 from 1 leaves 0, and we’re done. Filling in zeros, we see that the binary equivalent of 201
is:

 1 1 0 0 1 0 0 1
 ____________ ___________ ___________ ___________ ___________ ___________ ___________ ___________

72 128= 62 64= 52 32= 42 16= 32 8= 22 4= 12 2= 02 1=

 7

You should “memorize” the binary representations of the decimal digits 0 through 15 shown below.

You may be wondering about the leading zeros in the table above. For example, the decimal number 5 is
represented in the table as the binary number 0101. We could have represented the binary equivalent of 5
as 101, 00101, 0000000101, or with any other number of leading zeros. All answers are correct.

Sometimes, though, you will be given the size of a storage location. When you are given the size of the
storage location, include the leading zeros to show all bits in the storage location. For example, if told to
represent decimal 5 as an 8-bit binary number, your answer should be 00000101.

Converting a Decimal Number to a Binary Number: Method 2

The second method of converting a decimal number to a binary number entails repeatedly dividing the
decimal number by 2, keeping track of the remainder at each step. To convert the decimal number x to
binary:

Step 1. Divide x by 2 to obtain a quotient and remainder. The remainder will be 0 or 1.

Step 2. If the quotient is zero, you are finished: Proceed to Step 3. Otherwise, go back to Step 1,
assigning x to be the value of the most-recent quotient from Step 1.

Step 3. The sequence of remainders forms the binary representation of the number.

Example

Convert the decimal number 53 to binary using the second method described above.

 Solution:

Decimal Number Binary Number
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Decimal Number Binary Number
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

 8

We divide 53 by 2, resulting in a quotient of 26 with a remainder of 1. We now repeat the process with the new

quotient: We divide 26 by 2, resulting in a quotient of 13 and a remainder of 0. We continue this repeated
division by 2, until the quotient is equal to zero. The sequence of remainders forms the binary equivalent
of the decimal number 53. The full set of calculations is shown below.

 Remainder
 2 | 53

 | 26 1

 | 13 0

 | 6 1

 | 3 0

 | 1 1

 | 0 1
 So, in binary, 53 = 1 1 0 1 0 1

Note that the remainder from the very first division of the decimal number by two provides the least
significant bit (i.e., the rightmost bit) in the binary representation. The remainder from each division then
provides successive bits, from right to left. The remainder of the final division (which will always be 1)
will provide the most significant bit (i.e., the rightmost bit) in the binary representation.

Example

Convert the decimal number 201 to binary.

Solution: The full set of calculations is shown below.

 Remainder

 2 | 201

 | 100 1

 | 50 0

 | 25 0

 | 12 1

 | 6 0

 | 3 0

 | 1 1

 | 0 1
 So, in binary, 201 = 1 1 0 0 1 0 0 1

So, now you should be comfortable going back and forth between binary and decimal representations.

 9

Decimal number Binary number

Given a decimal number, convert it to binary

Given a binary number, convert it to decimal

4. The Hexadecimal Number System

We often have to deal with large positive binary numbers. For instance, consider that computers connect
to the Internet using a Network Interface Card (NIC). Every NIC in the world is assigned a unique 48-bit
identifier as an Ethernet address. The intent is that no two NICs in the world will have the same address.
A sample Ethernet address might be:

000000000100011101011110011111111001001000110110

As another example, computer engineers must oftentimes look at the contents of a specific item in
computer memory. You might, for instance, have to look at a variable that is stored at address:

 00000000000100101111111101111100

You would probably agree that these long binary strings would be cumbersome to transcribe or to read off
to a coworker. Even if you have come to love the binary number system, you would still likely agree that
these long strings are too much of a good thing.

Fortunately, large binary numbers can be made much more compact—and hence easier to work with—if
represented in base-16, the so-called hexadecimal number system. You may wonder: Binary numbers
would also be more compact if represented in base-10—why not just convert them to decimal? The
answer, as you will soon see, is that converting between binary and hexadecimal is exceedingly easy—
much easier than converting between binary and decimal.

The Hexadecimal Number System

The base-16 hexadecimal number system has 16 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F).
Note that the single hexadecimal symbol A is equivalent to the decimal number 10, the single symbol B is
equivalent to the decimal number 11, and so forth, with the symbol F being equivalent to the decimal
number 15. The first 16 numbers in the decimal, binary, and hexadecimal number systems are listed in the
following table.

 10

Just as with decimal notation or binary notation, we again write a number as a string of symbols, but now
each symbol is one of the 16 possible hexadecimal digits (0 through F). To interpret a hexadecimal
number, we multiply each digit by the power of 16 associated with that digit’s position.

For example, consider the hexadecimal number 1A9B. Indicating the values associated with the positions
of the symbols, this number is illustrated as:

1 A 9 B

 316 216 116 016
 position position position position

Converting a Hexadecimal Number to a Decimal Number

To convert a hexadecimal number to a decimal number, write the hexadecimal number as a sum of powers
of 16. For example, considering the hexadecimal number 1A9B above, we convert this to decimal as:

 1A9B = () () () ()3 2 1 01 16 16 9 16 16A B+ + + = 4096 + 10(256) + 9(16) + 11(1) = 6811

Example

 11

Express the hexadecimal number 3CB as a decimal number.

Solution: 3CB = 3 16 12 16 11 162 1 0⋅ + ⋅ + ⋅ = 971

Converting a Decimal Number to a Hexadecimal Number

The easiest way to convert from decimal to hexadecimal is to use the same division algorithm that you
used to convert from decimal to binary, but repeatedly dividing by 16 instead of by 2. As before, we keep
track of the remainders, and the sequence of remainders forms the hexadecimal representation.

For example, to convert the decimal number 746 to hexadecimal, we proceed as follows:

 Remainder

 16 | 746

 | 46 A

 | 2 E

 | 0 2
 2EA

So, the decimal number 746 = 2EA in hexadecimal

Note that with hexadecimal notation, as with binary and decimal notation, we must be careful that the base
is understood. When we speak of the number “23”, do we mean the decimal number 23 (in base 10), or
do we mean the hexadecimal number 23 (which happens to equal 35 in base 10)? If the base is not clear
from the context, it can be made explicit by including the base as a subscript as in: 16 1023 35= . Some
texts use the prefix 0x to indicate that a number is hexadecimal. That is, instead of writing 1623 some
texts will use the notation 0x23.

You may be happy to learn that, as a practical matter, engineers rarely have to convert between decimal
and hexadecimal (exams administered by sadistic professors being one of those rare instances!).

Converting a Hexadecimal Number to a Binary Number

Engineers often have to convert between binary and hexadecimal but, as we promised, that is quite simple
to do.

We can convert directly from hexadecimal notation to the equivalent binary representation by using the
following procedure:

• Convert each hexadecimal digit to a four digit binary number, independent of the other
hexadecimal digits.

• Concatenate the resulting four-bit binary numbers together.

 12

For example, to convert the hexadecimal number 4DA9 to binary, we first convert each hexadecimal digit
to a four-bit string:

4 = 0100 D = 1101 A = 1010 9 = 1001

and then concatenate the results: The resulting binary number is: 0100 1101 1010 1001. We can
drop leading zeros (from the leftmost quartet only!), giving us:

 4DA9 = 100110110101001

Example

Convert the hexadecimal number 13F to binary.

Solution: 1 = 0001 3 = 0011 F = 1111

Thus 13F = 1 0011 1111

Converting a Binary Number to a Hexadecimal Number

Converting from binary to hexadecimal entails reversing the procedure for converting from hexadecimal
to binary. Specifically, we can convert directly from binary notation to the equivalent hexadecimal
representation by using the following procedure:

• Starting at the right, collect the bits in groups of 4

• Convert each group of 4 bits into the equivalent hexadecimal digit

• Concatenate the resulting hexadecimal digits

For example, to convert 110110101001 to hexadecimal, we collect the bits into groups of 4 starting at
the right: 1101 1010 1001, and then we convert each collection of bits into a hexadecimal digit:

 1101 1010 1001
 D A 9

Thus 110110101001 = DA9

Example

Convert the binary number 110101001 to hexadecimal.

Solution: 1 1010 1001
 1 A 9 = 1A9

Do you see why when you pair bits into groups of 4 you need to start at the right?

Example

Suppose the first byte of a variable is stored at memory location numbered:

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0

We say that this memory location is the address of the variable. What is this variable’s address in hexadecimal
notation?

 13

Solution: 0000 0000 0001 0010 1111 1111 0111 1100

 0 0 1 2 F F 7 C

 = 0012FF7C

 Again, the hexadecimal number system simply provides us with a more convenient means of conveying
binary quantities. Instead of saying “The item is at address 1001000100111111”, we can say “The
item is at address 913F.”

Example

Suppose you are told that an item is at 32-bit address C356A20C. What is the value of the fourth bit in this
address, counting from the left?

Solution:

Since the first hexadecimal digit is C, the first four bits are 1100. Thus, the fourth bit is a zero.

Note how more difficult this question would have been if the address was provided in base-10 instead of
in base-16.

So, now you should be comfortable going back and forth between binary, decimal and hex
representations.

 14

Problems

1. Convert the following binary numbers to decimal number:

 (a) 10101
 (b) 11001
 (c) 100000
 (d) 111111

2. Convert the following decimal numbers to binary:

 (a) 50
 (b) 100
 (c) 128
 (d) 500

3. Convert the following binary number to hexadecimal:

 (a) 10110010101001001
 (b) 10000000001
 (c) 1111111
 (d) 110011

4. Convert the following hexadecimal numbers to binary:

 (a) ABCD
 (b) 111111
 (c) 101
 (d) 23AC

	Converting a Binary Number to a Decimal Number
	Converting a Decimal Number to a Binary Number: Method 1
	Converting a Decimal Number to a Binary Number: Method 2
	To convert a hexadecimal number to a decimal number, write the hexadecimal number as a sum of powers of 16. For example, considering the hexadecimal number 1A9B above, we convert this to decimal as:
	We can convert directly from hexadecimal notation to the equivalent binary representation by using the following procedure:

