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Chapter 1 
 
Binary Arithmetic 
 

 
 

 
1. Binary Addition 

 
We are familiar with adding decimal (base-10) numbers.  But how do we add binary numbers?  Consider 
the equation you encountered in first grade: 

 
   1 + 1 = 2 
 

If you converted each decimal number in this equation to binary, the result would be: 
 
  1  +  1  =  10 
 

We see that when we add two binary ones together, we have a carry into the next column (from the ones 
column to the twos column).  This idea of “carrying over to the next column” when adding binary 
numbers together is analogous to carrying over when adding decimal numbers.   
 
Think of performing the addition of the decimal numbers 8 and 4: 

 
   8 
           + 4 
    ? 
 

The result (which we know is the decimal number twelve) cannot be represented by a single decimal 
symbol (of which the choices are 0, 1, 2, 3, 4, 5, 6, 8 and 9) contained just within the ones column.  We 
have to carry over a quantity of ten to the tens column (where it becomes 1 since it is now in the tens 
column), and subtract ten from the two numbers we are adding: 8 + 4 – 10 = 2.     
    

   8 
           + 4 
             12 
 

The same principle carries over to binary addition (or addition in any number system): If the result of the 
addition is a number too big to be represented as a single digit in the number system, we carry over to the 
next column, and subtract the quantity from the numbers being added together. 

 
 Think of performing the addition of the binary numbers 1 and 1: 
 
   1 
           + 1 
    ? 
 

The result (which we know to be equivalent to the decimal number two) cannot be represented by a single 
binary symbol (0 or 1) contained just within the ones column.  We have to carry over a quantity of two to 
the twos column (where it becomes 1 since it is in the twos column), and subtract two from the numbers 
we are adding: 1 + 1 – 2 = 0.        
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   1 
           + 1 
             10 
 
 Think of performing the addition of the three binary numbers 1 + 1 + 1: 
 
   1 
   1 
           + 1 
    ? 
 

The result (which we know to be equivalent to the decimal number three) cannot be represented by a 
single binary symbol (0 or 1) contained just within the ones column.  We have to carry over a quantity of 
two to the twos column (where it becomes 1 since it is now in the twos column), and subtract two from the 
three numbers we are adding: 1 + 1 + 1 – 2 = 1.      

 
   1 
   1 
           + 1 
             11 
 

Addition of multi-bit binary numbers is accomplished using the results above, on a column-by-column 
basis.  That is, for each column, use the results:  
 
   0 + 0 = 0 
    1 + 0 = 1 
      1 + 1 = 0 with a carry of 1 to the left 
   1 + 1 + 1 = 1 with a carry of 1 to the left  
 
For instance, consider the addition of the two binary numbers 11 and 01: 

 
   11 
           + 01 
   ?? 
 

Starting with the right column, 1 + 1 results in 0, with a 1 carried to the left: 
 
   1 
   11 
           + 01 
   ?0 
 

Now, in the left column, we are adding 1 + 1 + 0, which results in 0, with a 1 carried to the left: 
  
            11 
   11 
           + 01 
   00 
 

Finally, we consider the leftmost column (which consists of just the carryover from the column to its 
right), resulting in:  
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   11 
           + 01 
            100 

 
Example                                                                                                                                                                

 
Perform the addition of the binary numbers: 
 

   1 0 1 1 0 1   1 1 1 1 
  +        1 0 1 1    +      1 0 1 
        -------------   -------- 

 
Solution: 
 

   1 0 1 1 0 1   1 1 1 1 
  +        1 0 1 1    +      1 0 1 
        -------------   -------- 
   1 1 1 0 0 0        1 0 1 0 0 
 
                                                                                                                                                               

Example                                                                                                                                                                
 

Suppose we use 4 bits to store integers.  Show the addition of the decimal numbers 13 + 2  in binary. 
 

Solution: 
 
 

    1 1 0 1  
  +     0 0 1 0    
          --------   

    1 1 1 1  
 

Note that the answer in binary, 1111, is equivalent to 15 in base-10. 
 

                                                                                                                                                               

 
 
 

2.  Overflow 
 
Your friend has written a computer program that initializes a natural number (i.e., a nonnegative integer) 
to the number 4,294,967,293 and then successively adds 1 to the number, printing the result to the screen.  
He believes that his program must have an error since it produces the results shown below.  He asks for 
your help.    
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Putting aside the obvious question “Why would your friend have written this program?”, you decide to 
help.  You notice that the program seems to start out well, adding one and printing out the correct result 
for the first two iterations, but then, upon reaching the value 4,294,967,295, the addition of one seems to 
“reset” the value back to zero.  The program then seems to resume normal operation, adding one and 
printing out the correct result.     

 
What’s going on here? 

 
To explore this problem, first consider a computer that uses 4 bits to store integers.  The number 15 would 
be stored as 1111.  What would be the result of the calculation 15 + 1 in binary?  Performing binary 
addition: 
 

       1 1 1 1  
  +     0 0 0 1    
          --------   

      1 0 0 0 0 
 
The result appears to be 10000 which would seem to be correct, since this is, after all, equivalent to 16 in 
decimal, and that is the right result for 15 + 1. 
 
Except that this would not be the answer the computer would supply!  The correct answer to the binary 
addition, 10000, requires five bits.  But the computer (in our example) stores all integers in four bits.  All 
bits beyond the rightmost four bits are discarded.  So, the answer to 15 + 1 in binary on our 4-bit computer 
would be zero (i.e., 0000). 
 
This scenario, where an answer requires more bits than the computer has available, is called overflow.   

 
Example                                                                                                                                                                

 
Consider a computer that uses 4 bits to store integers.   Show the binary calculation of 13 + 5. 
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Solution: 
 

    1 1 0 1  
  +     0 1 0 1    
          --------   

      1 0 0 1 0  
 

Since only the rightmost four bits are retained, the answer would be 0010.  This is, of course, incorrect, 
since overflow has occurred. 

 
                                                                                                                                                               

 
Overflow in the storage of binary numbers is a real practical problem, and has been the bane of many a 
programmer.  The most visually spectacular overflow error occurred in 1996 when the European Space 
Agency’s Ariane 5 rocket exploded 37 seconds into its maiden launch, sending $500 million dollars into 
oblivion.  The programmers asked an on-board computer to store a 64-bit velocity in a 16-bit space.  Only 
the rightmost 16-bits were retained.  The rocket attempted to respond to the erroneous velocity, swerving 
itself into disintegration.         

 
So, if a computer stores positive integers in a certain number of bits, what is the largest number that can be 
stored before overflow occurs?  

 
Using 3 bits the largest binary integer that can be stored is:  111   = 7   (which is  23 – 1 ) 

 
Using 4 bits the largest binary integer that can be stored is:  1111  = 15   (which is  24 – 1 ) 

 
Using 5 bits the largest binary integer that can be stored is:  11111  =   31   (which is  25 – 1 ) 
 
We would be tempted to conclude that using n bits the largest binary integer that can be stored is:  2n – 1 . 
This is in fact correct, but the above argument is not a proof you should be comfortable with.   
 
To determine the largest number that can be stored in n bits, first consider the largest number that can be 
stored in 4 bits:   

 
1  1  1  1    
 
 

 
 

   23         22           21                 20   
       position        position                position        position 

 
 

Note that the most significant bit position is the 23  position.  If we add 1 to this number (and ignore the 
fact that overflow will occur), the result will be 10000.  Converting this to decimal is easy: There is only 
a single 1 in the 42  position.  So, one number larger than 1111 is equal to 42 .  So 1111 must be equal 
to 42 1− . 
 
More generally, the most significant bit position in an n-bit number will be the 12n−  position.  The largest 
number that can be stored in n bits will be a string of n ones (where the leftmost bit is in the 12n−  position).  
Now, if we add 1 to this string of n ones (and ignore the fact that overflow will occur), the result will be a 
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single 1 in the 2n  position, followed by zeros.  So, one number larger than the largest number that can be 
stored in n bits is equal to 2n .  So, the largest number that can be stored in n bits is 2 1n − . 

      
Example                                                                                                                                                                

 
What is the largest positive integer that can be stored on a computer if the computer stores positive integers in 
four bytes? 
 

Solution: 
 
 Four bytes is 32 bits, and the largest number that can be stored in 32 bits is 322 1− .   

 
                                                                                                                                                               

 
Can you now inform your friend about the problem in his program? 

 
 
3.  Negative Binary Numbers 

 
We need to represent negative integers also.  How do we handle that? 
 
You might be tempted to reply: “Easy, just use a negative sign!”  But this won’t work.  Remember: 
everything must be represented as bits—that is, ones and zeros! A negative sign is neither a one nor a zero. 

 
The most intuitive solution might be the sign and magnitude representation.  With this notation: 

 
• Let the leftmost bit represent the sign, say 0 for positive and 1 for negative. 

 

• The remaining bits represent the magnitude. 
 

For example, suppose we store integers in four bits with the sign and magnitude scheme.   Then 3 would 
be stored as  
 

    0011 
 

and 2−  would be stored as  
 

     1010 
 

As appealing as this scheme might seem at first, it is not used.  To see why, consider the addition of 3 and 
– 2.  Using addition in the typical way, we would see 

 
      3    0011 
   2−    1010 
        1   1101  
 

But 1101 would be equal to 5−  under sign and magnitude notation.  
 

So, addition is not straightforward if the signs of the two arguments differ.  To make the sign-magnitude 
scheme work, think about what you would need to do:   
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• You would have to first determine which of the two arguments has the larger magnitude (ignoring 
the sign bit) 
 

• You would then subtract the small magnitude from the larger magnitude 
 

• You would then attach to this result the sign of the quantity that had the higher magnitude 
 

While this could be made to work, the resulting hardware would be unnecessarily complex.   
 

As a further annoyance with this scheme, it has two representations for zero: 0000  and  1000. (It took 
mathematicians over a thousand years before they could handle the concept of zero…Surely we should 
pause before casually introducing a system with two zeros!) 

 
The Two’s Complement Notation 
   

All computers represent integers in a manner that allows both positive and negative numbers.  To 
represent positive numbers, simply use its binary representation, as we have done before.  Negative binary 
numbers are represented in what is called “two’s complement notation”.  To find the two’s complement of 
a binary number, change each 1 to a zero and each zero to a one (i.e., invert all the bits), then add one to 
this quantity. 

 
Example                                                                                                                                                                

 
What is the two’s complement of the binary number  10010010 ? 
 

Solution: 
 

     Invert all the bits: 0 1 1 0 1 1 0 1  
 

     Add 1 to this:       0 1 1 0 1 1 1 0   
 

 
                                                                                                                                                               

So…how do we find the representation of a negative decimal number?  Do the following: 
 

• First find the binary representation of the number without the negative sign 
 

• Then take the two’s complement.  The result is the representation of the negative number. 
 
Example                                                                                                                                                                

 
Express the decimal integer   –13  as an eight bit binary number. 
 

Solution:   
 
   First, +13   =   0 0 0 0 1 1 0 1 

 

   Now, invert all the bits:  1 1 1 1 0 0 1 0 
 

   Now, add one to this:      1 1 1 1 0 0 1 1 
 

   So, the decimal number –13 as an 8-bit binary number is   1 1 1 1 0 0 1 1 
 

                                                                                                                                                               

 
Example                                                                                                                                                                
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Express the decimal integer  −53 as an eight bit binary number. 
 

Solution:   
 
    First, +53   =    0 0 1 1 0 1 0 1 

 

   Now, invert all the bits:  1 1 0 0 1 0 1 0 
 

   Now, add one to this:      1 1 0 0 1 0 1 1 
 

   So, the decimal number –53 as an 8-bit binary number is   1 1 0 0 1 0 1 1 
 

                                                                                                                                                               

 
Example                                                                                                                                                                
 
Suppose we store integers in 4 bits.  Represent 1−  in two’s complement notation. 
 

Solution:   
 

Start with +1:  0001 
   Invert bits:  1110 
   Add one:  1111 

 
                                                                                                                                                               

 
There is a neat shortcut to find the two’s complement of a binary number.  Starting at the right, and 
moving to the left, leave all bits unchanged until the first 1 is encountered.  Leaving this very first 1 
unchanged, continue moving to the left inverting all bits from that point onward.  For instance, we noted 
above that the decimal number +53 in binary is 
 

0 0 1 1 0 1 0 1  
 
To find the two’s complement, we start at the right and move to the left, stopping at the first 1 that we 
encounter, which in this case happens to be the rightmost bit.  We leave this bit unchanged, but invert all 
other bits to the left, resulting in  
 

1 1 0 0 1 0 1 1  
Example                                                                                                                                                                
 
Use the shortcut technique to determine the two’s complement representation of  -92 using 8 bits 
 

Solution:   
 

Positive 92 in binary is 01011100.  We leave the two rightmost zeros and the rightmost 1 
unchanged, and flip the remaining bits, yielding: 

 
     -92  =  10100100 
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You are likely wondering: Why is the two’s complement notation a good representation for negative 
numbers?  Why do we flip all the bits and add one instead of, say, flipping half the bits and adding 5? 
 
Here’s why: A binary number, added to its two’s complement, results in zero.  This is “how its ‘sposed to 
be: a number added to its negative should give zero.   
 
For example, let’s presume integers are represented using 8 bits.  Back in Section 1.3 you determined that 
the binary representation of 53 was 00110101.  Two examples back you determined that −53 was 
11001011.  Let’s add 53 to  −53: 
 

 

        53: 0 0 1 1 0 1 0 1   
                  -53: 1 1 0 0 1 0 1 1 
      --------------- 
       1 0 0 0 0 0 0 0 0   
 

If we are only using 8 bits, then only the eight least significant bits are retained, and the result is zero (as it 
should be). 

 
If we represent negative numbers using two’s complement notation, then binary addition involving 
negative numbers will give the correct result.  Every computer today uses two’s complement notation for 
the storage of integers. 

 
Example                                                                                                                                                                
 
Suppose a computer stores integers in 4 bits using two’s complement notation.  Show the calculation – 5 + 7. 
 

Solution: 
 
    1 0 1 1  
  +     0 1 1 1    
          --------   

    0 0 1 0    ( = 2 , as it should, noting that the overflow bit has been neglected)  
 

                                                                                                                                                               

 
 
4. Two’s Complement: A Closer Look 

 
Suppose we have a computer that stores integers in four bits.  If we only have non-negative integers, then 
we can represent the integers 0 – 15 using four bits:   

 
Decimal Number           Binary Number 

0   0000 
1   0001 
2   0010 
3   0011 
4   0100 
5   0101 
6   0110 
7   0111 

 

Decimal Number           Binary Number 
8   1000 
9   1001 
10   1010 
11   1011 
12   1100 
13   1101 
14   1110 
15   1111 
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Note that we are limited to 16 possible four-bit strings.  These 16 unique strings are shown in the right 
column of the table above.  Since we have 16 unique 4-bit strings possible, we can represent 16 unique 
decimal numbers.  These 16 decimal numbers (0 – 15) are shown in the left column of the table above.  
The assignment of decimal number to bit string is performed by the usual decimal to binary conversion. 
 
Now, suppose we still want to restrict ourselves to storing integers in four bits, but we want to include 
both positive and negative integers (using two’s complement notation, since we know that works!).  What 
integers can we now store, if only four bits are available? 

 
It should be clear that we cannot store the integers –15 to +15 within our 4-bit space.  The range –15 to 
+15 comprises 31 unique integers, but since we have only 16 possible bit strings available, we can only 
store 16 unique integers within our four bit allotment. 

 
You should agree that we should store at least the integers –7 to +7.  But this range will comprise 15 
integers, and we have the ability to store sixteen—so there is room for one more!  Should it be +8?  Or 
should it be –8?  It can’t be both.  Let’s begin by filling in the integers 0-7: 

 
 

Decimal Number           Binary Number 
0   0000 
1   0001 
2   0010 
3   0011 
4   0100 
5   0101 
6   0110 
7   0111 
   1000 
   1001 
   1010 
   1011 
   1100 
   1101 
   1110 
   1111 
 

Let’s fill in the range of integers from –1 to –7 one integer at a time.  Starting with –1, we determine that 
this integer is represented by 1111 in 2’s complement notation, and we have: 

 
    Decimal Number     Binary Number 

0   0000 
1   0001 
2   0010 
3   0011 
4   0100 
5   0101 
6   0110 
7   0111 
   1000 
   1001 
   1010 
   1011 
   1100 
   1101 
   1110 
- 1     1111 

 

Moving on to –2, we determine that this integer is represented by 1110 in 2’s complement notation: 
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    Decimal Number     Binary Number 
0   0000 
1   0001 
2   0010 
3   0011 
4   0100 
5   0101 
6   0110 
7   0111 
   1000 
   1001 
   1010 
   1011 
   1100 
   1101 
- 2   1110 
- 1     1111 

 
Adding the two’s complement representations for –3, –4, –5, –6 and –7, we have:   

 
    Decimal Number     Binary Number 

0   0000 
1   0001 
2   0010 
3   0011 
4   0100 
5   0101 
6   0110 
7   0111 
   1000 
-7   1001 
-6   1010 
-5   1011 
-4   1100 
-3   1101 
-2   1110 
-1     1111 

We have one bit string left: 1000.  Should this be +8 or –8? 
 

It would be easy to have this string, 1000, represent +8.  After all, in binary, +8 is equal to 1000. 
 

But let’s consider –8.  In two’s complement notation this integer is represented by… 1000 !  So, we 
really do have a choice: we can let our last bit string 1000 be either +8 or –8.  Both would work. 

 
But one choice is much better than the other!  Look carefully at the table above: For all the positive 
numbers, the most significant bit in the four-bit string is a zero.  For all the negative numbers, the most 
significant bit in the four-bit string is a one.  If we assign the remaining bit string (1000) to the integer –8, 
it will continue to be the case that the most significant bit in the four-bit string is a one for all negative 
numbers and a zero for all positive numbers.  This is very handy—we can immediately tell if a number 
represents a positive or negative integer just by examining the most significant bit!  This is the way to go! 
 
The final assignment is: 

 
    Decimal Number     Binary Number 

0   0000 
1   0001 
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2   0010 
3   0011 
4   0100 
5   0101 
6   0110 
7   0111 
-8   1000 
-7   1001 
-6   1010 
-5   1011 
-4   1100 
-3   1101 
-2   1110 
-1     1111 

 
To summarize: If we use four bits to store integers using two’s complement notation, the range of integers 
that can be stored is – 8 through +7, and, given the four-bit binary number, we can immediately tell if it is 
positive or negative by looking at the leftmost bit.  If the leftmost bit is a 0, the number is positive.  If the 
leftmost bit is a 1, the number is negative. 
 
How do we “reverse” the two’s complement process; i.e., given that a 4-bit two’s complement number is 
stored as, say, 1011, how can I easily determine that the bit string is storing the decimal value -5?   
 
To determine the decimal equivalent of a number stored in two’s complement notation, perform the 
following: 
 

• If the leftmost bit is a 0, the number is positive.  Simply convert the bit string to a decimal number. 
• If the leftmost bit is a 1, the number is negative.  To determine the decimal number: 

o Take the two’s complement of the bit string (i.e., flip all the bits and add one)  
o Convert the bit string to a decimal number 
o Append a negative sign to the result. 

Example                                                                                                                                                                
 
Suppose we store integers in 4 bits using two’s complement notation.  What is the decimal representation of the 
number stored as 1111 ? 
 

Solution:   
 
This is a negative number.  Flip the bits (resulting in 0000) and add 1 (resulting in 0001).  This is the 
decimal number 1.  After tacking on a negative sign, we have our answer: 1−  

 
                                                                                                                                                               

 
Example                                                                                                                                                                
 
Suppose we store integers in 4 bits using two’s complement notation.  What is the decimal representation of the 
number stored as 0101 ? 
 

Solution:  This is a positive number.  Converting to decimal, we see that this is 5. 
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The foregoing results presumed that we were storing integers in two’s complement notation using 4 bits, 
but the results can be easily generalized to the case where we store integers in two’s complement notation 
using n bits. 

 
Example                                                                                                                                                                
 
What is the largest positive integer that can be stored in n bits using two’s complement notation? 

 
Solution:   
 
We saw earlier that if we only use nonnegative numbers, the largest number that can be stored in n bits is 
2 1n − .  Now, with two’s complement notation, the leftmost bit will be a zero for positive numbers.  The 
question then becomes: What is the largest positive integer that can be stored in 1n −  bits?  The answer is 

12 1n − − . 
 

                                                                                                                                                               

 
Example                                                                                                                                                                
 
What is the smallest negative integer that can be stored in n bits using two’s complement notation? 

 
Solution:  
 
Extending the four-bit case, the smallest negative number will have a 1 in the most significant bit (in the 

12n− position) and zeroes in all other bit positions. Converting this number to decimal results in 12n−− . 
 

                                                                                                                                                               

 
We summarize important results.  If we store integers in two’s complement notation using n bits: 

 
• The left most bit functions as a sign bit.  If the leftmost bit is a 0, the number is positive; if the 

leftmost bit is a 1, the number is negative. 
 

• The range of values that can be stored is  12 1n − −    down to   12n −−   
 

• Regardless of the number of bits used, the number zero is always represented as   
 

  0000 0000 … 0000 
 

• Regardless of the number of bits used, the number 1−  is always represented as 
 

  1111 1111 … 1111 
 

• Regardless of the number of bits used, the most positive number is:  
 

  0111 1111 … 1111 
 

• Regardless of the number of bits used, the most negative number is:   
 

  1000 0000 … 0000 
  

 
Example                                                                                                                                                                
 
What is the decimal equivalent of this 32-bit two’s complement number? 
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   1111 1111 1111 1111 1111 1111 1111 1100 
 

Solution:  
 
 The number is negative since the most significant bit is a 1.  Taking the two’s complement, converting to 
decimal and appending a negative sign, we see that this is the decimal number 4− . 

 

 
                                                                                                                                                               

 
Example                                                                                                                                                                
 
Show the calculation – 5 + 3  in 4-bit two’s complement notation.  Convert the answer back to decimal to 
confirm your answer is correct. 
 

Solution: 
    1 0 1 1  
  +     0 0 1 1    
          --------   

    1 1 1 0    ( = -2)  
 

 
                                                                                                                                                               

 
Example                                                                                                                                                                
 
Show the calculation 6 + 3  in 4-bit two’s complement notation.  Convert the answer back to decimal to confirm 
your answer is correct. 
 

Solution: 
    0 1 1 0  
  +     0 0 1 1    
          --------   

    1 0 0 1    ( = -7)  
 

This is a negative number!  6 + 3 certainly does not equal –7!  What happened?   
 

This is an example of overflow.  The largest positive number that can be stored in 4-bit two’s 
complement notation is   4 12 1− −  = 7.  But 6 + 3 is 9, which is larger than the largest number that can be 
stored, causing an erroneous result. 

 
                                                                                                                                                               

Example                                                                                                                                                                
 
Show the calculation – 6  + (  – 3 )  in 4-bit two’s complement notation.  Convert the answer back to decimal to 
confirm your answer is correct. 
 

Solution:   
 1 0 1 0  

  +     1 1 0 1    
          --------   

    0 1 1 1    ( = 7)  
 

This is a positive number!  – 6 + ( – 3 ) certainly does not equal 7!  What happened?  
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This is also an example of overflow.  The smallest negative number that can be stored in 4-bit two’s 
complement notation is   4 12 8−− = − .  But    – 6 + ( – 3 )  is –9, which is smaller than the smallest 
number that can be stored, causing an erroneous result.   
 

                                                                                                                                                               

 
Overflow is recognized when we add 2 numbers of the same sign and get a result of the opposite sign. 

 
5. Binary Subtraction 
 

Subtraction in binary entails nothing new!  To compute a – b, we compute a + ( – b) where – b is 
represented using two’s complement notation. 

 
Example                                                                                                                                                                
 
Show the subtraction 3 2−  in a two’s complement computer that stores integers in 4 bits. 

 
Solution:   0011 

  1110 
  0001 

 
                                                                                                                                                               

 
Example                                                                                                                                                                

 
Suppose we use six bits to represent a two’s complement binary number.  Do the following subtraction.  
  

   011101 
  − 100101 
 
 

Show the subtraction above with all numbers converted to decimal, and explain your results.  
 

Solution:    
 
The two’s complement of  100101  is  011011, so we are actually adding two positive numbers:   
 

     011101 
    + 011011 
     111000    overflow 
 

We recognize overflow since the answer is negative.  In base-10, the problem we are asked to solve is:  29 
– (–27).  The answer should be 56, but this exceeds the largest positive number that can be stored in six 
bits with two’s complement (which is 52 1 31− = ).  The answer we arrive at above (–8) is erroneous 
because overflow has occurred.     

 
 

                                                                                                                                                               

 
We have overflow if the addition of two positive numbers yields a negative number, or if the addition of 
two negative numbers yields a positive number.  It turns out that there is a quick check that can be done to 
detect if overflow has occurred: If the carry into the most significant bit (which serves as a sign bit) differs 
from the carry out from the most significant bit, overflow has occurred.  
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Problems  
 
  
1. Perform the addition of the following unsigned (i.e., not two’s complemented) binary numbers: 
 
 (a) 1111  (b) 1011  (c) 1110011   
      + 1010         + 0011                    +   0011110 
 
 
2. Suppose that unsigned numbers are stored in five bits.  Perform the following additions, indicating 

which additions produce overflow. 
 
 (a) 111100  (b) 101100  (c) 111001   
      + 001011         + 001100                  +   011001 
 
 
3. Suppose we use 6 bits to store integers.  Show the following additions in binary: 
 
 (a) 10 + 5 
 (b) 32 + 31 
 (c) 1 + 31 
 (d) 21 + 21 
 
4. Express the following numbers as 8-bit binary numbers in two’s complement notation: 
 
 (a) 60 
 (b) -60  
 (c) 1 
 (d) -1 
 (e) 0 
 (f) 12 
 (g) -15 
 (h) -128 
 
5. Convert the following six-bit two’s complement numbers to decimal: 
 
 (a) 010111 
 (b) 110111 
 (c) 011111 
 (d) 100000 
 
 
6. Show each of the following calculations in 4-bit two’s complement notation.  In each case, convert the 

result (in binary) back to a decimal number. 
 
 (a)  – 5 + 7   
 (b)  – 3 + 3   
 (c)  6 4−   
 (d)  2 3− −   
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7. Suppose we use six bits to represent a two’s complement binary number.   
 
 (a)  What is the largest number that can be represented? 
 (b)  What is the smallest number that can be represented? 
 (c)  How many total base-10 numbers can be represented? 
 
8.   Suppose we use six bits to represent a two’s complement binary number.  Perform the following 

additions, indicating when overflow occurs: 
 
 (a)  010101  (b)  100000   
  + 001101   + 110011 
 
 
 
 (c)  010101  (d)  100110   
  + 101111   + 111111 
 
 
9.   Suppose we use six bits to represent a two’s complement binary number.  Perform the following 

subtractions, indicating when overflow occurs: 
 
 (a)  010101  (b)  100000   
  - 001101   - 110011 
 
 
 
 (c)  010101  (d)  100110   
  - 101111   - 111111 
 
 
 
 
 
 
 


	All computers represent integers in a manner that allows both positive and negative numbers.  To represent positive numbers, simply use its binary representation, as we have done before.  Negative binary numbers are represented in what is called “two’s complement notation”.  To find the two’s complement of a binary number, change each 1 to a zero and each zero to a one (i.e., invert all the bits), then add one to this quantity.

