
 1

Chapter 1

Binary Codes

1. Representation of Characters

You now know how positive and negative integers are represented within the hardware of a computer.
We now address the representation of characters, such as letters of the alphabet, punctuation signs and
other assorted symbols (e.g., $, %, ?, etc.).

Characters are stored within the computer using the American Standard Code for Information Interchange
code—the ASCII code—shown in the table below.

ASCII

Hex

Symbol

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS

TAB
LF
VT
FF
CR
SO
SI

ASCII

Hex

Symbol

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

ASCII

Hex

Symbol

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F

(space)
!
"

$
%
&
'
(
)
*
+
,
-
.
/

ASCII

Hex

Symbol

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

ASCII

Hex

Symbol

64
65
66
67
68
69
70
71
72
73

40
41
42
43
44
45
46
47
48
49

@
A
B
C
D
E
F
G
H
I

ASCII

Hex

Symbol

80
81
82
83
84
85
86
87
88
89

50
51
52
53
54
55
56
57
58
59

P
Q
R
S
T
U
V
W
X
Y

ASCII

Hex

Symbol

96
97
98
99
100
101
102
103
104
105

60
61
62
63
64
65
66
67
68
69

`
a
b
c
d
e
f
g
h
i

ASCII

Hex

Symbol

112
113
114
115
116
117
118
119
120
121

70
71
72
73
74
75
76
77
78
79

p
q
r
s
t
u
v
w
x
y

 2

74
75
76
77
78
79

4A
4B
4C
4D
4E
4F

J
K
L
M
N
O

90
91
92
93
94
95

5A
5B
5C
5D
5E
5F

Z
[
\
]
^
_

106
107
108
109
110
111

6A
6B
6C
6D
6E
6F

j
k
l
m
n
o

122
123
124
125
126
127

7A
7B
7C
7D
7E
7F

z
{
|
}
~
�

Each ASCII symbol is shown with both its hexadecimal representation and its base-10 representation.
Suppose we wanted to know how the symbol for the question mark is stored internally within the
computer. Scanning the table for the question mark, we note that its hexadecimal value is 3F. Converting
this hexadecimal value to binary, we conclude that the question mark is stored as 00111111.

Example

How is the letter t stored in memory?

Solution: The letter t is stored as hexadecimal 74, which is 01110100

Suppose you use super-hero powers to look into a memory location and you see: 01110100. What is the
meaning of the quantity stored at this location? If you convert this binary value to an integer, you would
conclude that the integer 116 is stored in this location. On the other hand, looking at the ASCII table, you
could conclude that the character t is stored at this location. Which is correct?

The meaning of each piece of data stored within a computer is defined by the programmer. For example,
suppose the programmer is using a variable named midcode to store a value. If the programmer intends
this value to be an integer that is equal to 116, he might include the line of code:

 int midcode = 116;

On the other hand, if the programmer intends the value to be the character t, he would instead use this line
of code:

 char midcode = ‘t’;

In both cases, the data is stored as 01110100. The computer will interpret the data according to the
instructions provided by the programmer. If the programmer has instructed the computer to interpret
midcode to be an integer, then the bit string 01110100 will be interpreted as the integer 116. On the
other hand, if the programmer has instructed the computer to interpret midcode to be a character, then
the bit string 01110100 will be interpreted as the letter t.

Parity Bit

As shown in the ASCII table above, each symbol can be represented with a seven-bit binary number.
However, since most computers manipulate data in a byte or an eight-bit quantity, an extra bit is added
in the leftmost bit (most significant bit or MSB). The extra bit is sometimes used for error detection code
known as a parity bit. For odd parity, the parity bit is added to ensure that the total number of 1’s in the
byte is odd. Similarly, an even parity bit is added to make the total number of 1’s is even. For example,
consider following characters:

 3

ASCII Decimal Binary (7 bits) w/ even parity w/ odd parity
‘t’ 116 1110100 01110100 11110100
‘C’ 67 1000011 11000011 01000011

In each case, a parity bit is inserted in the leftmost position to produce an even number of 1’s for even
parity or an odd number of 1’s for od parity.

2. Binary-Coded Decimal (BCD)

We close with a brief overview of a different manner of converting between binary and decimal.

In some practical applications we will use a digital logic circuit to drive a numeric display, where each
individual display unit displays a single digit. So, for example, we might have the number 472 in our
logic circuit, and we would like to display this on three separate display units (one for the 4, one for the 7
and one for the 2).

Working with this sort of display hardware is facilitated through the use of binary-coded decimal (BCD),
where each individual digit is represented by a 4-bit number. For example, to represent the decimal
number 472 in binary-coded decimal (BCD), we convert each digit to a four bit binary number,
independent of the other decimal digits. Thus, 472 equal 0100 0111 0010 in BCD.

3. Gray Code

Gray code is another number system where two successive numbers differ in only one bit position. The
Gray code is used to prevent an error during transition of one number to the next. For example, consider
the transition from 0111 to 1000 in a normal binary sequence. Because of the delays due to logic gates
or mechanical switches, each bit will likely change state at different time. Therefore, we may see
erroneous number during the transition time such as: 0111 – 1011 – 1001 – 1000. A table of 4-bit Gray
code is shown below.

Gray Code Decimal Gray Code Decimal

0000
0001
0011
0010
0110
0111
0101
0100

0
1
2
3
4
5
6
7

1100
1101
1111
1110
1010
1011
1001
1000

8
9
10
11
12
13
14
15

 4

Problems

1. How many bits are needed to represent:

 (a) the 26 letters of the alphabet
 (b) the individual cards in a deck of playing cards
 (c) the faces on a pair of dice

2. Convert the decimal number 500 to BCD.

3. Decode the following ASCII code:
1001010 1101111 1100010 1110011

4. Add an even parity bit to each character in problem 3, and then convert the bit string to hexadecimal.

