
 6

Iterative Systems

Most of you (I would guess all of you) have computers with microprocessors that support the so-called
x86-64 instruction set. This means, among other things, that your computer is able to add together two
64-bit quantities.

Let’s consider this problem: You are back in the year 1999, leading the AMD team that is tasked with
building a circuit to add two 64-bit binary numbers together. One of your team members vaguely
remembers his EC262 class, and announces that such a circuit can be built with a combinational logic
circuit. He proposes a system with no modularity—a system that directly inputs the two 64-bit binary
numbers to be added (and a carry-in bit) and directly outputs the 64-bit sum (with a possible 65th carry
out bit). He shows you a schematic that looks like a huge vat of spaghetti accidentally spilled on the
floor of King Hall (before it is picked up by the cleaning crew and served to hungry midshipmen).

You ask your team member: How many lines are in your truth table? What is his reply?

The number of lines in a truth table is:

If a supercomputer could process 1 billion lines of this truth table every second, how long would it take
to examine the truth table?

Your team member tells you he tried to implement his circuit on a protoboard, but the sheer number of
wires caused flame and smoke. You fire the team member (just as he is offering to show you his 129-
variable Karnough map) because you remember from EC262 that there is a better way to do this:

Note that this is precisely how you perform addition! You start at the least significant digit, and, digit-
by-digit, calculate the sum and carry.

Your design can be described by a truth table with __ lines and with

Systems that are built by combining a number of identical blocks are termed

 7

The Delay Problem Look at the above picture. Suppose all of the bits in the two numbers to be
added—i.e., 64 63 3 2 1a a a a a and 64 63 3 2 1b b b b b are instantaneously available to the inputs of all of the
full adders. The correct output does not appear instantly; i.e., we have to wait for the correct values of

64 63 3 2 1s s s s s to appear. Why?

Even after the inputs at a logic circuit appear,

The picture below, from the Marcovitz text, illustrates the issue. Consider the simple circuit on the left,
and note the waveforms for the three inputs A, B and C, shown on the right. Let us say that the delay
through any gate has the same value: ∆ seconds.

From Introduction to Logic Design, Alan Marcovitz, McGraw Hill, 2010

The first thing that occurs is the input C changes from 0 to 1. This causes the output F to change from 1
to 0, but only after a delay of ∆ seconds, as shown.

Next, A changes from 0 to 1. This causes X to change from 1 to 0 after ∆ seconds, and this change in
the value of X, in turn, causes the output F to change from 0 to 1, but only after a total delay of 2∆
seconds following the change in A.

Now, look at time 5, where B and C both change simultaneously. Explain the result seen for output F.

 8

This sort of delay can be a problem for iterative systems, like the one designed on the prior page, since

In the case of the 64-bit adder:

 …and so forth…

Delay for the Full Adder

Let’s look at the NAND gate implementation of the full adder. Suppose that each NAND gate imposes
a delay of ∆ seconds (i.e., the output of an individual NAND gate will be valid ∆ seconds after its
inputs are valid).

From Introduction to Logic Design, Alan Marcovitz, McGraw Hill, 2010

From the time that the input bits (a and b) and the carry-in bit (cin) appear at the inputs to the FA, how
long does it take until the sum and the carry out bits are correct?

 For the sum bit:
 For the carry-out bit:

Delay for the Two-bit Adder Implemented with Two Full Adders

What is the delay before the correct value appears for the two-bit adder implemented below?

 9

So:

1s is produced after .

1c is produced after ____ and this is then fed into the second FA.

2s is produced after

2c is produced after

Delay for the Three-bit Adder Implemented with Three Full Adders

What is the delay before the correct value appears for the three-bit adder implemented below?

3s is produced after

3c is produced after

 10

Delay for the Four-bit Adder Implemented with Four Full Adders

What is the delay before the correct value appears for the four-bit adder implemented below?

From Introduction to Logic Design, Alan Marcovitz, McGraw Hill, 2010

4s is produced after

3c is produced after

Delay for the 64-bit Adder implemented with 64 Full Adders

What is the delay before the correct value appears for the 64-bit adder you designed on page 1?

64s is produced after

Reducing the Delay for a 64-bit Adder

You have presented your 64-bit adder design to your boss at AMD. He is very happy with all aspects of
the design except for the 132 ∆ second delay in operation. He asks you: Is there any way we can trim
the delay?

Why would this help?

This is not quite so simple because

•

•

 11

It turns out that the outc bit can be implemented with a delay of 2∆ ; we will skip the details, except to
say that outc is the OR-ing of 7 terms, where each term is a two-input or three-input AND, and no terms
are complemented.

Suppose we placed 32 of these in series to get a 64-bit adder. What is the delay before the correct value
appears for the 64-bit adder?

So, we see a fundamental trade-off that applies to the design of adders, and, moreover, applies to all
iterative systems:

• As we use a larger number of small building blocks,

• As we use a smaller number of big building blocks,

The Subtractor

Based on your efforts, AMD has mass produced a four-bit adder. You have now been tasked to design a
four-bit subtractor using two’s complement arithmetic. Get to work.

Suppose you are given the four-bit

 12

Your boss is very impressed! How would you extend this to subtract 64-bit quantities?

Right now you have two separate circuits: a four-bit adder and a four-bit subtractor. Your boss would
like you to design a circuit that can do addition and subtraction using the same 4-bit adder, where a
control signal is used to select addition or subtraction. Get to work.

The Comparator

AMD is so impressed with you that you have been tasked with designing a two-bit comparator.
Specifically, you have been asked to design a 2-input, 2-output logic circuit that will compare the two
input bits. The two inputs are labeled A and B. The two outputs are labeled (A > B) and (A < B).

A

B

Comparator

A > B

A < B

So, if the input A is greater than the input B, then the output labeled A > B will be 1 and the other output
0. If the input A is less than the input B, then the output labeled A < B will be 1 and the other output 0.
Get to work!

 13

Extend your design from by adding a third output that will be 1 if A and B are equal.

Extend your design to build a two-bit comparator that will compare two bits 2 1 2 1 and A A B B .

Think of it this way (remember, the topic is Iterative Systems!): Suppose you use the design above for
the comparison of the most significant bit. Now, suppose we can use those outputs as inputs for a
modified circuit for the least significant bit.

How would you modify the check for equality?

 14

How would you modify the check for greater than? The difficulty

How would you modify the check for less than? The difficulty is

This building block can be cascaded to build comparators for bit strings of any size.

The Marcovitz text has a good picture of a consolidated design for a single bit in a multi-bit comparator.

From Introduction to Logic Design, Alan Marcovitz, McGraw Hill, 2010

