
1

EC262
VHDL Part III

The Generate statement

The GENERATE statement can be used to have a section of code repeat a number of times. In its simplest
form, the syntax for the statement is:

label: FOR identifier IN range GENERATE
 (statements)
END label;

Note that label is required for a GENERATE statement.

Example (from text) Suppose we had the following signals:

SIGNAL a, b, x: BIT_VECTOR(7 DOWNTO 0) ;

We would like to assign the values of x to be the bitwise XOR of b and a, with the bits taken from the opposing
directions. Specifically, we would like the LSB of x to be the XOR of the LSB of a with the MSB of b. Then
the next-LSB of x would be the XOR of the next-LSB of a with the second-most significant but of b. See below.

The following VHDL code would accomplish this:

What this code does:

The identifier named i starts at 0, and the statement that executes as a result is:

Then, the identifier i is automatically incremented to 1, and the statement that executes as a result is

Then, the identifier i is automatically incremented to 2, and the statement that executes as a result is

2

This continues in like manner for i = 3, 4, 5 and 6. The final time the loop iterates (when i = 7), the statement
that executes as a result is

So, again, the GENERATE statement can be used to have a statement (or several statements) repeatedly execute
a number of times.

The IF-GENERATE statement. There exists a variation of the GENERATE statement that can be used to
repeatedly execute a number of times if a condition is met. The syntax is:

 label: IF condition GENERATE
 (statements)
END label;

Note that an IF-GENERATE statement is used within a FOR-GENERATE loop.

Example. Implement the following circuit using GENERATE statements.

A (7 downto 0)

B (7 downto 0)

C (7 downto 0)

3

Example: If the two NOR operations are replaced by two OR operations, we can modify the ARCHITECTURE
section to use one unconditional GENERATE statement as:

Example: Implement a 2-to-4 decoder using

a. WHEN/ELSE statement.
b. WITH/SELECT/WHEN statement.
c. GENERATE statement.

4

a. WHEN/ELSE statement.

5

b. WITH/SELECT/WHEN statement (ARCHITECTURE section only, same LIBRARY and ENTITY
sections).

c. GENERATE statement.

6

VHDL Code Enhancements for nerds

Before ending our discussion of concurrent code, let’s look at a few techniques to improve the code we are
already familiar with. Since you are, by definition, nerds (check you major in MIDS), you should endeavor to
use these code enhancements.

Nerd Enhancement 1: Generic parameters

We can declare a generic parameter in our entity or architecture VHDL sections. Recall our mux entity from
last lecture:

ENTITY mux IS
 PORT(
 x0, x1, x2, x3 : IN BIT_VECTOR (7 DOWNTO 0);
 sel : IN BIT_VECTOR (1 DOWNTO 0);
 y : OUT BIT_VECTOR (7 DOWNTO 0)
);
END mux;

An alternative way to represent this same entity would be as:

ENTITY mux IS

 GENERIC (N : INTEGER := 8);

 PORT(
 x0, x1, x2, x3 : IN BIT_VECTOR (N-1 DOWNTO 0);
 sel : IN BIT_VECTOR (1 DOWNTO 0);
 y : OUT BIT_VECTOR (N-1 DOWNTO 0)
);
END mux;

Note the line:
GENERIC (N : INTEGER := 8);

This line declares a parameter named N and assigns it the value of 8. Notice that for a generic parameter (which
serves as a constant) a value is assigned using the symbol := (this is different for a signal, for which a value is
assigned using the symbol <=).

What this code does: Anywhere in the VHDL code that uses the entity mux, if N is encountered, it will be
immediately replaced with 8.

So, the line above that says:

x0, x1, x2, x3 : IN BIT_VECTOR (N-1 DOWNTO 0);

is treated as:
 x0, x1, x2, x3 : IN BIT_VECTOR (7 DOWNTO 0);

Why would we want to do this? ... Why does the use of a generic parameter improve our code?

If we need to change our mux to an 32-bit mux, we just have one simple change to make: change the generic
parameter to 32.

7

Nerd Enhancement 2: The STD_LOGIC type

Although declaring a signal to be a BIT or a BIT_VECTOR is intuitive and easy to understand, it is actually
frowned upon! Instead of using a declaration like:

 a : OUT BIT ;

to set up a signal a as a single output bit, we should instead use:

 a : OUT STD_LOGIC ;

For practical purposes, STD_LOGIC in this context means the same thing as a single BIT.

Similarly, instead of using a declaration like:

a, b: IN BIT_VECTOR(7 DOWNTO 0) ;

we should instead use:

a, b: IN STD_LOGIC_VECTOR(7 DOWNTO 0) ;

What is the possible point of placing the clear and understandable BIT and BIT_VECTOR with the cryptic and
mysterious STD_LOGIC and STD_LOGIC_VECTOR?

The BIT type only allows us to set bit values to ‘0’ or ‘1’. The STD_LOGIC and STD_LOGIC_VECTOR
types allow us to set bit values to ‘0’, ‘1’, or “don’t care” (which is specified by a hyphen).

Nerd Enhancement 3: Using ‘RANGE and ‘REVERSE_RANGE

Once we declare a variable, say a, with a range, we can refer to its range as a’RANGE . For example, if we
had the declaration

 a ,b, x : IN STD_LOGIC_VECTOR(7 DOWNTO 0) ;

and later had a generate statement such as:
 fun: FOR i IN 0 TO 7 GENERATE
 x(i) <= a(i) NOR b(i) ;
 END fun;

we could instead use the following for the generate statement:

fun: FOR i IN a’RANGE GENERATE
 x(i) <= a(i) NOR b(i) ;
 END fun;

Again, as with generic parameters, the idea is to make code easier to change.

8

Example (from text) Design an address decoder that has the truth table shown below:

 enable address word_line ___

 0 XXX 11111111
 1 000 11111110
 1 001 11111101
 1 010 11111011
 1 011 11110111
 1 100 11101111
 1 101 11011111
 1 110 10111111
 1 111 01111111

9

Now, suppose your boss said he needed the same type of address decoder, but for 32-bit addresses. What would
you have to change in your code above?

 Just the single line declaring the generic parameter N!

Nerd Enhancement 4: Using signed numbers when necessary

We can declare values to be unsigned or signed. Signed numbers use the normal two’s complement notation.
For signed numbers, we must include the library ieee.numeric_std.all .

Example (from text): The program below implements a multiplier. If the decimal value of a is 13 and the
decimal value of b is 2, what will be the value of y (as 8 bits) after this section of code executes?

(13)(2) = 26, so y will be 00011010

10

If the decimal value of a is 13 and the decimal value of b is 2, what will be the value of y (as 8 bits) after this
section of code executes?

Now a has the value of -3. So y will have the value of -6.
In eight bits, -6 is 11111010

11

Nerd Enhancement 5: Using type conversion

Suppose you are working with a team of fellow nerds on a big design project. Eventually, all of your pieces of
VHDL must all come together without any hitches. All teams must use two inputs labeled a and b, where a and
b are defined as:

 a, b : IN STD_LOGIC_VECTOR(3 DOWNTO 0);

The head nerd (Lanoue) has asked you to design an entity and architecture for a multiplier, that will return the
product of a and b. It is necessary that the product appear as:

 prod : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

Lanoue says that he tried to use the multiply symbol (prod <= a * b ;), but his program crashed with
the error message:

INCOMPATIBLE TYPES CODE 1298 MULTIPLY UNRESOLVED 1A CANNOT MULTIPLY BIT
VECTORS SQUAWK SQWUAWK CODE 42 NITWIT ALERT

What do you do?

Convert the bit vectors to signed numbers, do the multiplication, and then convert back.

To convert from one type to another, we use the syntax:

 newtype(identifier)

So, for example, to convert a to a signed number, we could use SIGNED(a).

12

The “good coding” practice (which, to be honest, we will not use all the time) is: PORTs should usually be
STD_LOGIC or STD_LOGIC_VECTOR. For arithmetic operations (+, -, *, /, **) the types SIGNED or
UNSIGNED are preferred.

