
 1

Analysis and Design of Sequential Systems-III
Using the JK Flip Flop

From the state table (or state diagram), we can see the desired state transitions for our FSM. That is, given the
current state and the input(s), the state table tells us the next desired state.

The transition from one state to the next is handled by the flip flops. So, when using a particular flip flop (D,
JK or T), we have to decide: “What do I have to do with the inputs to the flip flop to achieve the desired state
transition”.

As an example, looking at one of the state variables (i.e., one of the flip flop outputs), I might want the flip flop
to shift to state q* for certain values of q and x. Once I decide what q* should do, I have to decide:

• What do I have to do to the input D to get the desired transition if I am using a D flip flop?
• What do I have to do to the inputs J and K to get the desired transition if I am using a JK flip flop?
• What do I have to do to the input T to get the desired transition if I am using a T flip flop?

Last time, we talked about the easiest flip-flop to use: the D flip flop. Once we have derived an equation for the
desired next state Q*, the D flip flop is easiest to use because:

Since Q* = D , the value of D is equal to the desired next state! So, once we derive the equations for the
desired next state, we simply apply that to the D input of the D flip flop.

Now, we turn our attention to designing FSMs that use the JK flip flop. The process is not as straight forward
as the design using the D flip flop, but, as we will see, the resulting circuits with JK flip flops are often simpler
(i.e., have fewer gates).

Using the JK flip flop—laborious method

Fortunately, the design of FSMs starts out the same way regardless of the flip flop used. Recalling the
procedure for designing FSMs…

The General Guidelines for the Design of Sequential Systems

1. From the initial description of the problem, determine the inputs, outputs, what needs to be
stored in memory, and what states the system will move through

2. If necessary, code the inputs, outputs and states to binary
3. Derive the state diagram and the state table
4. Choose a flip flop type
5. Derive the Next State Logic and Output Logic circuits

… we note that we have to do the same Steps 1, 2 and 3 before we start to think about the flip flop choice.

Suppose we have done Steps 1, 2 and 3, and we have come up with the following state table for a desired FSM:

 A*B*
 A B x = 0 X = 1

 0 0 0 0 0 1

 0 1 0 0 1 0

 1 0 0 0 1 1

 1 1 0 0 1 1

Using the state table, we derive the equations for A* and B* using a K-map:

 2

 A*

 AB
X 00 01 11 10

0
1

 A* = AX + BX

 B*

 AB
X 00 01 11 10

0
1

B* = AX + B’X

At this point—if we were using D flip flops—we would set * *,A BD A D B= =

But, now we want to accomplish the desired state transitions using JK flip flops. How do we do this?

Let’s start by building a table showing what J and K must be to cause desired transitions for a JK flip flop. The
table will have this form:

 q q* J K

On the left side of the table, I show possible transitions from q to q*, and on the right side of the table, I show
the values of J and K necessary to cause that transition.

So, the left side of the table is:

 q q* J K

 0 0
 0 1
 1 0
 1 1

Now, think about that top line of the table. If I want a JK flip flop to go from state 0 to state 0, what must be the
conditions on J and K to accomplish this transition?

 J = 0, K = X

Fill in the complete table below:

q q* J K

 0 0 0 X
 0 1 1 X
 1 0 X 1
 1 1 X 0

Now, going back to our original state table:

 3

 A*B*
 A B x = 0 X = 1

 0 0 0 0 0 1

 0 1 0 0 1 0

 1 0 0 0 1 1

 1 1 0 0 1 1

Let’s separate out just the information for A*:

 A*
 A B x = 0 X = 1

 0 0 0 0

 0 1 0 1

 1 0 0 1

 1 1 0 1

Now, let’s add two more columns to show the values of and A AJ K necessary to achieve the desired A*

Fill in the complete table below:

 A* JA KA
 A B x = 0 X = 1 x = 0 X = 1

 0 0 0 0 0 X 0 X

0 1 0 1 0 X 1 X

 1 0 0 1 X 1 X 0

 1 1 0 1 X 1 X 0

Derive the expression for JA.

 AB
X 00 01 11 10

0
1

JA = BX

Derive the expression for KA.

 AB
X 00 01 11 10

0
1

KA = X’

Are we done?

 4

No! We have to repeat this process for the second flip flop, determining JB and KB.

Let’s separate out just the information for B*:

 B* JB KB
 A B x = 0 X = 1 x = 0 X = 1

 0 0 0 1 0 X 1 X

 0 1 0 0 X 1 X 1

 1 0 0 1 0 X 1 X

 1 1 0 1 X 1 X 0

Derive the expression for JB.

 AB
X 00 01 11 10

0
1

JB = X

Derive the expression for KB.

 AB
X 00 01 11 10

0
1

KB = A’ + X’

Using the JK flip flop—simplified method

Although I am sure you will agree that the last example was a lot of fun, there is a much quicker way to derive
the expressions for J and K from the state table.

Recall next state equation for the JK flip flop: JK flip flop: q* = Jq’ + K’q

Now, here is what we will do to find a next state variable, say A*:

Step 1. From the state table, produce the K-map as though you were going to implement your design
with D flip flops.

Step 2. Split the K-map into two K-maps: one associated just with A, and one associated just with A’

Step 3. Minimize A* on each of these separate K-maps. This will result in a function of the form:

A* = JAA’ + K’A A

Step 4. From the preceding step, we can derive J and K

This is probably extremely unclear, so let’s do an example.

Consider the prior state table for which we wished to develop a circuit using JK flip flops:

 5

 A*B*
 A B x = 0 X = 1

 0 0 0 0 0 1

 0 1 0 0 1 0

 1 0 0 0 1 1

 1 1 0 0 1 1

Let’s first go through the solution for A*.

Step 1: From the state table, produce the K-map as though you were going to implement your design with D flip
flops

A*:
 AB
X 00 01 11 10

0
1 1 1 1

Step 2. Split the K-map into two K-maps: one associated just with A, and one associated just with A’

A’:
 AB
X 00 01

0
1

A’BX
A:

 AB
X 11 10

0
1

 AX

Step 3. Minimize A* on each of these separate K-maps. This will result in a function of the form:

A* = JAA’ + K’A A

Write A*: A* = A’BX + AX

Step 4. From the preceding step, we can derive J and K

 In general q* = Jq’ + K’q

In this case we have

A* = BX A’+ XA

So we see:
 JA = BX
 KA = X’

 6

Same answer as before! And I think you will agree—much simpler!

Repeat this process to find the solution for B*.

B*:
 AB
X 00 01 11 10

0
1 1 1 1

Step 2. Split the K-map into two K-maps: one associated just with B, and one associated just with B’

B’:
 AB
X 00 10

0
1

B’X
B:

 AB
X 01 11

0
1

 A BX

Step 3. Minimize B* on each of these separate K-maps. This will result in a function of the form:

B* = JBB’ + K’B B

Write B*: B* = B’X + B(AX)

Step 4. From the preceding step, we can derive J and K

 In general q* = Jq’ + K’q

In this case we have

B* = B’X + B(AX)

So we see:

 JB = X
 KA =A’ + X’

Same answer as before! And I think you will agree—much simpler!

Example. Last lecture we designed a simple three-bit counter—a counter that just counts up:

000, 001, 010, 011, 100, 101, 110,111, 000, 001, 010, 011, 100, 101, 110, 111, 000, 001, …

Recall the state diagram.

 7

000

001

010

011

100

101

110

111

Recall the state table.

 X Y Z * * *X Y Z

 0 0 0 0 0 1

 0 0 1 0 1 0

0 1 0 0 1 1

 0 1 1 1 0 0

1 0 0 1 0 1

 1 0 1 1 1 0

1 1 0 1 1 1

 1 1 1 0 0 0

Recall the design using D flip flops:

Redesign the circuit using JK flip flops.

K-map for X* :

 XY
Z 00 01 11 10

0 1 1
1 1 1

 8

Split:

X’
 XY
Z 00 01

0
1

 X’YZ

X
 XY
Z 11 10

0
1

 XZ’ + XY’

 Thus X* = YZ X’ + (Z’ + Y’) X

Comparing this to the general form: X* = JX X’ + KX’ X

 we have: JX = YZ , KX = YZ

K-map for Y* :
 XY
Z 00 01 11 10

0 1 1
1 1 1

Split:

Y’
 XY
Z 00 10

0
1

 Y’Z

Y
 XY
Z 01 11

0
1

 YZ’

 Thus Y* = Z Y’ + Z’ Y

Comparing this to the general form: Y* = JYY’ + KY’ Y, we have: JY = Z , KX = Z

 9

K-map for Z* :

 XY
Z 00 01 11 10

0 1 1 1 1
1

Split:

Z’
 XY
Z 00 01 11 10

0

 Z’

Z
 XY
Z 00 01 11 10

0

 0

 Thus Z* = Z’ + 0 Z

Comparing this to the general form: Z* = JZZ’ + KZ’ Z, we have: JZ = 1 , KZ = 1

Circuit:

Solution:

Which circuit is better and why: the one with D flip flops, or the one with JK flip flops?

