LAB1

First, you’ll need to download the Keil MDK from
https://www.keil.com/arm/demo/eval/arm.htm -- you will need to fill out all required

fields to be able to download it. Once you reach the end of the installation process, select
“MCB17xx” as the default board for example projects, which will allow you to easily
access multiple programs that are deployable onto the board we will be using.

First download blinky.zip, extract it to another location. Open uVision. In the uVision
IDE, go to “Project -> Open Project” and find the Blinky folder. Inside of it, select the
Blinky.uvproj file. Once you have done this, the project will be open in the left column.

To build the project, go to “Project -> Rebuild All Target Files”. You should have no

errors.

File Edit WView

& d

-2 LPC1768 Flasl
—-=5 StartUp

startL

+ syskel
=I5 Source Fil
GLCD,

Retar

LED.c

] P

j o
j o
P
j le
= [#] IRa.c

B
j o
j st
j o
j o
s
j le
=

£

Epr. |€Feo. |

compiling LED
compiling IRQ

] st

Project | Flash Debug Peripherals Tools SVCS Window Help
Mew pWision Project...
Mew Multi-Project Workspace...
Open Project...
Close Project

Export
Manage

Select Device for Target 'LPC1763 Flash'...

Setial ;2& Options far Target 'LPC1768 Flash'...

Clean target
Build target
Rebuild all target files

@ Translate C\Documents and Settings\root\Desktop\Blinky\main.c

v | 1 C\Dotuments and Settings\root\Desktop\Blinky\Blinky.uvpraj
2 ChKeilARM\Boards\KeilWMCBL1700\Elinky\Blinky.uvproj
3 ChKeilARM\Boards\KeilMCB1700Blinky\ASM2.uvpraj
4 Ch\KeilARM\Boards\Keil\MCBE1700"Blinky\ ASM.uvpraj
5 ChKeilARM\Boards\KeilWMICELT00Blinky_ULp\Blinky.uvpraj
6 Ch\KeilARM\Boards\KeilMCBELTO0NCANVCAN, uvpraoj
7 ChEeilARKBoards\Keil\WMCBLT0O\EasyWEB \EasyWeb.uvpraj
g ChKeilARM\Boards\KeilMCBL700NEXTTExti uvpraj
a Ch\KeilARM\Boards\KeilMCE1700NLCD_Blinky\Blinky.uvpraj
10 ChEeilARMBoards'\Keil\MCBEL700\RTX_Blinky\Blinky.uvpraj

Alt+F7

Ctrl=F7

just FP1.Z5

T

e 1A e AT

=

https://www.keil.com/arm/demo/eval/arm.htm

Please take a look at main.c by double clicking it. Inside main.c is a call to assembly
code. Please take a look at this code. You will not understand this yet. Today, you have
code that should work, but it is good to learn the debug process.

Now press “Debug > Start/Stop Debug Session” to begin debugging. Please advise the
uVision user guide. Learn how to single step and set breakpoints.

Sidenote: Debugging via Simulation

To begin debugging the program, press Alt-F7, and in the menu that pops up, go to the
“Debug” tab, and in the top left select the “Use Simulator” box to tell the IDE that we’ll
be using the simulator instead of an actual device to debug.

Device] Target] Dutput] Listing] zer] E.-"C++] Az] Linker Debug l thilities]
f* Use Simulator Settings || © Use: |LILINK2..’ME Cortex Debugger ﬂ Settings
[Limit Speed to Feal-Time
[v Load Application at Startup [+ Fiun ba mainl) [+ Load Application at Startup [+ B bo mainl)
| mitialization File; | ritialization File:
Festore Debug Session Settings Festore Debug Session Settings
[+ Breakpoints [v Toolbow [v Breakpoints [v Toolbow
[v “watch wWindows & Performance &nalyzer [v “watch Windows
Iv Memary Display [v Memarny Dizplay
CPU DLL: Parameter: Ciriver DLL: Parameter:
SARMCMIDLL |-MPU SARMCMZ.DLL |-MPU
Dialog DLL: Parameter: Dialog DLL: FParameter:
[DARMP1.DLL |-pLPC1768 TARMP1.OLL |pLPC1763
| Ok | | Cancel | | Defaults |

Now your job is to download your debugged program onto the board. Press Flash-
>Download. Now press the reset button on the board. You should have a single LED
light up. If this is your first day, then you are done.

Part 2

The program that you have turns on a single LED on the board. Your next job will be to
have every light up on the board. To do this, you should look through the LPC1768 user
manual which includes a datasheet with the memory-mapped ports and their functions.
Specifically, the lights are controlled by GPIO1 and GP102, with bits 28, 29 and 31 of
GPI101 controlling the first three lights and bits 2, 3, 4, 5, and 6 controlling the other 5
lights. Make sure you only change the bits that correspond to the bits that activate the
LEDs, and that you change the bits at the correct addresses.

Part 3

Once you have made all of the LEDs light up, you will be making the LED used by our
first program, P1.28, flash on and off at different intervals. You will have to implement it
so that you use a loop to keep track of how long it has been lit or unlit, and flip its state
endlessly. Keep in mind you will have to look at the Datasheet again to figure out how to
turn lights off once they’ve been turned on, and you will need to use conditional
branching and register counters to keep track of the time.

Part 4

For this part, we would like for you to learn how to use the Push Button on the board.
Again, consult the LPC1768 User Manual to find out what memory location that it is
located at. Then use the push button as input to your program, and output to the LEDs in
binary the number of times that the button was pressed.

