
 LAB 1

First, you’ll need to download the Keil MDK from

https://www.keil.com/arm/demo/eval/arm.htm -- you will need to fill out all required

fields to be able to download it. Once you reach the end of the installation process, select

“MCB17xx” as the default board for example projects, which will allow you to easily

access multiple programs that are deployable onto the board we will be using.

First download blinky.zip, extract it to another location. Open uVision. In the uVision

IDE, go to “Project -> Open Project” and find the Blinky folder. Inside of it, select the

Blinky.uvproj file. Once you have done this, the project will be open in the left column.

To build the project, go to “Project -> Rebuild All Target Files”. You should have no

errors.

https://www.keil.com/arm/demo/eval/arm.htm

Please take a look at main.c by double clicking it. Inside main.c is a call to assembly

code. Please take a look at this code. You will not understand this yet. Today, you have

code that should work, but it is good to learn the debug process.

Now press “Debug > Start/Stop Debug Session” to begin debugging. Please advise the

uVision user guide. Learn how to single step and set breakpoints.

Sidenote: Debugging via Simulation

To begin debugging the program, press Alt-F7, and in the menu that pops up, go to the

“Debug” tab, and in the top left select the “Use Simulator” box to tell the IDE that we’ll

be using the simulator instead of an actual device to debug.

Now your job is to download your debugged program onto the board. Press Flash-

>Download. Now press the reset button on the board. You should have a single LED

light up. If this is your first day, then you are done.

Part 2

The program that you have turns on a single LED on the board. Your next job will be to

have every light up on the board. To do this, you should look through the LPC1768 user

manual which includes a datasheet with the memory-mapped ports and their functions.

Specifically, the lights are controlled by GPIO1 and GPIO2, with bits 28, 29 and 31 of

GPIO1 controlling the first three lights and bits 2, 3, 4, 5, and 6 controlling the other 5

lights. Make sure you only change the bits that correspond to the bits that activate the

LEDs, and that you change the bits at the correct addresses.

Part 3

Once you have made all of the LEDs light up, you will be making the LED used by our

first program, P1.28, flash on and off at different intervals. You will have to implement it

so that you use a loop to keep track of how long it has been lit or unlit, and flip its state

endlessly. Keep in mind you will have to look at the Datasheet again to figure out how to

turn lights off once they’ve been turned on, and you will need to use conditional

branching and register counters to keep track of the time.

Part 4

For this part, we would like for you to learn how to use the Push Button on the board.

Again, consult the LPC1768 User Manual to find out what memory location that it is

located at. Then use the push button as input to your program, and output to the LEDs in

binary the number of times that the button was pressed.

