
1

UART, Timer and LCD Interfaces

1. Introduction

The set of notes show you how to send and receive data to/from I/O devices by using a UART circuit, and

how to time events by using a timer circuit. In addition, you will also learn how to interface with a liquid

crystal display (LCD) port that is connected to the 16x2 character display on the DE2_70 board. We will use the

Quartus II and SOPC Builder software to generate the hardware portion of the system. A block diagram for
the nios_system is shown in Fig. 1. We will use the Altera Monitor Program software to compile, load and run

application programs.

Nios II
Processor

Avalon Switch Fabric

On-chip
Memory

Switches
PIO (input)

SW(17:0)

Green LEDs
PIO (output)

LEDG(8:0)

Red LEDs
PIO (output)

LEDR(17:0)

KEY
PIO (input)

KEY(3:0)

18 9 18

HEX
PIO (output)

8

HEX7(7:0)

HEX
PIO (output)

8

HEX0(7:0)

Cyclone II FPGA

4

SCAN CODE
PIO (input)

8

SCAN_CODE(7:0)

SCAN READY
PIO (input)

SCAN_READY

SCAN READY
PIO (output)

READ

Interval
Timer

SRAM
Controller

SRAM
chip

LCD
Controller

16x2
LCD

Fig. 2. Nios system

2. JTAG UART

A simple and commonly used scheme for transferring data between a processor and an I/O device is known

as the Universal Asynchronous Receiver Transmitter (UART). A UART interface (circuit) is placed between the
processor and the I/O device. It handles data one 8-bit character at a time. The transfer of data between the

UART and the processor is done in parallel fashion, where all bits of a character are transferred at the same

time using separate wires. However, the transfer of data between the UART and the I/O device is done in bit-

serial fashion, transferring the bits one at a time.

We will use an interface of the UART type, called JTAG UART, which establishes a connection between a

Nios II processor and the host computer connected to the DE2_70 board. Fig. 2 shows a block diagram of
the JTAG UART circuit. On one side the JTAG UART connects to the Avalon switch fabric, which

interconnects the Nios II processor, the memory chips, and the I/O interfaces. On the other side it



2

connects to the host computer via the USB-Blaster interface. The JTAG UART core contains two registers:

Data and Control, which are accessed by the processor as memory locations. The address of the Control
register is 4 bytes higher than the address assigned to the Data register. The core also contains two FIFOs

that serve as storage buffers, one for queuing up the data to be transmitted to the host and the other for
queuing up the data received from the host. Fig. 3 gives the format of the registers.

Fig. 2. Block diagram for JTAG UART circuit

Fig. 3. Registers in JTAG UART core

The fields in the Data register are used as follows:

 b7−0 (DATA) is an 8-bit character to be placed into the Write FIFO when a Store operation is

performed by the processor, or it is a character read from the Read FIFO when a Load operation
is performed.

 b15 (RVALID) indicates whether the DATA field contains a valid character that may be read by
the processor. This bit is set to 1 if the DATA field is valid; otherwise it is cleared to 0.

 b31−16 (RAVAIL) indicates the number of characters remaining in the Read FIFO (after this read).

The fields in the Control register are used as follows:

 b0 (RE) enables the read interrupts when set to 1.

 b1 (WE) enables the write interrupts when set to 1.

 b8 (RI) indicates that a read interrupt is pending if the value is 1. Reading the Data register clears
the bit to 0.

 b9 (WI) indicates that a write interrupt is pending if the value is 1.

 b10 (AC) indicates that there has been JTAG activity (such as the host computer polling the JTAG

UART to verify that a connection exists) since the bit was cleared. Writing a 1 to AC clears it to 0.

 b31-16 (WSPACE) indicate the number of spaces available in the Write FIFO.

More information on the JTAG UART may be found in Section I, Chapter 5 of the Altera Embedded IP User

Guide [1].



3

Exercise:

Write a C program to implement a “typewriter-like” task; that is, read each character received by the
JTAG UART from the host computer and then display this character in the terminal window of the

Monitor Program. Use interrupts to complete this task.
o To enable interrupts, appropriate values must be written to the Control register of the JTAG

UART, and the Nios II’s control registers ctl0 and ctl3. If interrupt is used, enable read interrupt
only (disable write interrupt). More information can be found in Section I, Chapter 5 of the Altera

Embedded IP User Guide [1].

3. Interval Timer

A Nios II system can be created to include a 32-bit timer that can be used to measure various time
intervals. The programming interface for the timer includes six 16-bit registers, as illustrated in Fig. 4. The

Status register are located at the base address given by the SOPC builder.

Fig. 4. Interval timer registers

The bit fields in these registers are described below:

 TO provides a timeout signal which is set to 1 by the timer when it has reached a count value of
zero. The TO bit can be reset by writing a 0 into it.

 RUN is set to 1 by the timer whenever it is currently counting. Write operations to the status half

word do not affect the value of the RUN bit.

 ITO is used for generating Nios II interrupts

 CONT affects the continuous operation of the timer. When the timer reaches a count value of zero
it automatically reloads the specified starting count value. If CONT is set to 1, then the timer will
continue counting down automatically. But if CONT=0, then the timer will stop after it has

reached a count value of 0.

 (START/STOP) can be used to commence/suspend the operation of the timer by writing a 1 into

the respective bit.

The two 16-bit registers Counter start value low and Counter start value high allow the period of the timer to

be changed by setting the starting count value. It is possible to capture a snapshot of the counter value at

any time by performing a write to Counter snapshot low register. This write operation causes the current

32-bit counter value to be stored into the two 16-bit timer registers at Counter snapshot low and Counter
snapshot high. These registers can then be read to obtain the count value.

Bit b0 (TO) is set to 1 when the timer reaches a count value of 0. It is possible to generate an interrupt

when this occurs, by using the bit b16 (ITO). Setting the bit ITO to 1 allows an interrupt request to be
generated whenever TO becomes 1. After an interrupt occurs, it can be cleared by writing any value to



4

the register that contains the bit TO.

More information on the Interval Timer core may be found in Section IV, Chapter 27 of the Altera Embedded

IP User Guide [1].

Exercise:
Write a C program to blinks LEDG(0) at a 1-Hz rate. We want to use the Interval Timer circuit for this

purpose. The Interval Timer should interrupt the processor every 500 ms, at which point the interrupt
service routine or the interrupt handler should turn LEDG(0) on/off appropriately.

4. 16x2 LCD Display Interface

The Nios II system created for this lab includes a liquid crystal display (LCD) port that is connected to the

16x2 character display on the DE2_70 board. The display includes a memory for storing character data.
As indicated in Fig. 5, the memory has a total capacity of 40x2 characters. The first 16 characters stored in

each row are visible on the display, and the remaining 24 characters are not visible at any given time.
Each location in the memory can be accessed by combining the x,y coordinates into a 7-bit address as

depicted in Fig. 5b. Using this scheme, the top and bottom rows of the display start at addresses (0x00)

and (0x40), respectively, as we show in part (a) of the Fig. 5. The programming interface for the LCD
display port is illustrated in part (c) of Fig. 5. It includes an Instruction register that is used to control the

16x2 character display, and a Data register that is used to send character data to the display. Data can be

sent to the display as ASCII character codes, which are automatically converted by the 16x2 character

display into bit patterns using a built-in font.

Some of the instructions supported by the 16x2 character display are listed in Table 1. The first

instruction, which is identified by the setting b7 = 1, is used to set the location of the cursor. The 6-bit

Address field should be set using the values shown in Fig. 5a. After the location of the cursor has been set,

a character can be loaded into this location by writing its ASCII value into the Data register.

(a) 16x2 character display

(b) 16x2 character display addresses

(c) LCD display port registers (note: use byte addresses not word addresses)

Fig. 5. LCD addresses and registers



5

Table 1. LCD display instructions

When data is written into the cursor location, the 16x2 character display automatically advances the
cursor one position to the right. Multiple characters can be loaded into the display by writing each

character in succession into the Data register. As we showed in Fig. 5, the 16x2 character display includes

40 locations in each row. When the cursor is advanced past address (0x0F) in the top row, the next 24

characters are stored in locations that are not visible on the display. After 40 characters have been
written into the top row, the cursor advances to the bottom row at address (0x40). At the end of the

bottom row, the cursor advances back to address (0x00). The 16x2 character display has the capability to

shift its entire contents one position to the left or right. As shown in Table 1, the instruction for shifting

left is (0x18) and the instruction for shifting right is (0x1C). These instructions cause both rows in the

display to be shifted in parallel; when a character is shifted out of one end of a row, it is rotated back into
the other end of that same row. It is possible to turn off the blinking cursor in the display by using the

instruction (0x0C), and to turn it back on using (0x0F). The display can be erased, and the cursor location
set to (0x00), by using the instruction (0x01).

More information can be found in 16x2 Character Display for Altera DE2/DE2-70 Boards [2].

Exercise:

Write a C program to read a character received from JTAG UART and display it using 16x2 LCD display.

o The characters should be displayed from left to right in the bottom row

o Clear and restart when the bottom row is filled.

5. References

[1] Altera, “Embedded Peripheral IP User Guide,” 2010.

[2] Altera, “16x2 Character Display for Altera DE2/DE2-70 Boards,” 2009.


