214 Rapid Prototyping of Digital Systems Chapter 11

11 Interfacing to the PS/2 Keyboard and Mouse

The PS/2 interface was originally developed for the IBM PC/AT’s mouse and
keyboard in 1984. The Altera FPGA boards support the use of either a mouse or
keyboard using a PS/2 connector on the board (not both at the same time). This
provides only the basic electrical connections from the PS/2 cable and the
FPGA chip. It is necessary to design a hardware interface using logic in the
FPGA chip to communicate with a keyboard or a mouse. Serial-to-parallel
conversion using a shift register is required in the interface hardware.

11.1 PS/2 Port Connections

The PS/2 port consists of 6 pins including ground, power (VDD), keyboard
data, and a keyboard clock line. The FPGA board supplies the power to the
mouse or keyboard. Two lines are not used. Pins must be specified in one of the
design files.

Table 11.1 PS/2 Keyboard Commands and Messages.

Commands Sent to Keyboard Hex Value

Reset Keyboard FF
Keyboard returns AA, 00 after self-test

Resend Message FE

Set key typematic (autorepeat) FB, XX
XX is scan code for key

Set key make and break FC, XX

Set key make FD, XX

Set all key typematic, make and break FA

Set all keys make F9

Set all keys make and break F8

Make all keys typematic (autorepeat) F7

Set to Default Values F6

Clear Buffers and start scanning keys F4

Set typematic (autorepeat) rate and delay F3, XX

Set typematic (autorepeat) rate and delay
Bits 6 and 5 are delay (250ms to 1 sec)
Bits 4 to 0 are rate (all 0’s-30x/sec to all 1’s 2x/sec)

Read keyboard ID F2
Keyboard sends FA, 83, AB

Set scan code set FO, XX
XX is 01, 02, or 03

Echo EE

Set Keyboard LEDs ED, XX

XX is 00000 Scroll, Num, and Caps Lock bits
1is LED on and 0 is LED off

Both the clock and data lines are open collector and bi-directional. The clock
line is normally controlled by the keyboard, but it can also be driven by the
computer system or in this case the FPGA chip, when it wants to stop data
transmissions from the keyboard. Both the keyboard and the system can drive
the data line. The data line is the sole source for the data transfer between the

Interfacing to the PS/2 Keyboard and Mouse

215

computer and keyboard. The keyboard and the system can exchange several

commands and messages as seen in Tables 11.1 and 11.2.

Table 11.2 PS/2 Commands and messages sent by keyboard.

Messages Sent by Keyboard Hex Value
Resend Message FE
Two bad messages in a row FC
Keyboard Acknowledge Command FA
Sent by Keyboard after each command byte
Response to Echo command EE
Keyboard passed self-test AA
Keyboard buffer overflow 00

11.2 Keyboard Scan Codes

Keyboards are normally encoded by placing the key switches in a matrix of
rows and columns. All rows and columns are periodically checked by the
keyboard encoder or "scanned" at a high rate to find any key state changes. Key
data is passed serially to the computer from the keyboard using what is known
as a scan code. Each keyboard key has a unique scan code based on the key
switch matrix row and column address to identify the key pressed.

There are different varieties of scan codes available to use depending on the
type of keyboard used. The PS/2 keyboard has two sets of scan codes. The
default scan code set is used upon power on unless the computer system sends a
command the keyboard to use an alternate set. The typical PC sends commands
to the keyboard on power up and it uses an alternate scan code set. To interface
the keyboard to the FPGA board, it is simpler to use the default scan code set
since no initialization commands are required.

11.3 Make and Break Codes

The keyboard scan codes consist of 'Make' and 'Break' codes. One make code
is sent every time a key is pressed. When a key is released, a break code is sent.
For most keys, the break code is a data stream of FO followed by the make code
for the key. Be aware that when typing, it is common to hit the next key(s)
before releasing the first key hit.

Using this configuration, the system can tell whether or not the key has been
pressed, and if more than one key is being held down, it can also distinguish
which key has been released. One example of this is when a shift key is held
down. While it is held down, the '3' key should return the value for the '#'
symbol instead of the value for the '3' symbol. Also note that if a key is held
down, the make code is continuously sent via the typematic rate until it is
released, at which time the break code is sent.

216

Rapid Prototyping of Digital Systems Chapter 11

11.4 The PS/2 Serial Data Transmission Protocol
The scan codes are sent serially using 11 bits on the bi-directional data line.
When neither the keyboard nor the computer needs to send data, the data line
and the clock line are High (inactive).
As seen in Figure 11.1, the transmission of a single key or command consists of
the following components:

1. A start bit ('0")

2. 8 data bits containing the key scan code in low to high bit order

3. Odd parity bit such that the eight data bits plus the parity bit are an odd
number of ones

4. A stop bit ('1")

The following sequence of events occur during a transmission of a command by
the keyboard:

1. The keyboard checks to ensure that both the clock and keyboard lines are
inactive. Inactive is indicated by a High state. If both are inactive, the keyboard
prepares the 'start' bit by dropping the data line Low.

2. The keyboard then drops the clock line Low for approximately 35us.

3. The keyboard will then clock out the remaining 10 bits at an approximate
rate of 70us per clock period. The keyboard drives both the data and clock line.
4. The computer is responsible for recognizing the ‘start’ bit and for receiving
the serial data. The serial data, which is 8 bits, is followed by an odd parity bit
and finally a High stop bit. If the keyboard wishes to send more data, it follows
the 12th bit immediately with the next ‘start’ bit.

This pattern repeats until the keyboard is finished sending data at which point
the clock and data lines will return to their inactive High state.

Odd Parity Stop

Bit=0 8 Data Bits in Low to High Order Bit=0 Bit=1

Scan Code shown is 16H for a “1” character
which is keyboard key #2

Figure 11.1 Keyboard Transmission of a Scan Code.

Interfacing to the PS/2 Keyboard and Mouse 217

In Figure 11.1 the keyboard is sending a scan code of 16 for the "1" key and it
has a zero parity bit. When implementing the interface code, it will be
necessary to filter the slow keyboard clock to ensure reliable operation with the
fast logic inside the FPGA chip. Whenever an electrical pulse is transmitted on
a wire, electromagnetic properties of the wire cause the pulse to be distorted
and some portions of the pulse may be reflected from the end of the wire. On
some PS/2 keyboards and mice there is a reflected pulse on the cable that is
strong enough to cause additional phantom clocks to appear on the clock line.

Here is one approach that solves the reflected pulse problem. Feed the PS/2
clock signal into an 8-bit shift register that uses a 24MHz clock. AND the bits
of the shift register together and use the output of the AND gate as the new
"filtered" clock. This prevents noise and ringing on the clock line from causing
occasional extra clocks during the serial-to-parallel conversion in the FPGA
chip.

A few keyboards and mice will work without the clock filter and many will not.
They all will work with the clock filter, and it is relatively easy to implement.
This circuit is included in the FPGAcores for the keyboard and the mouse. Pin
assignments for the various FPGA boards are seen in Table 11.3

Table 11.3 The PS/2 Keyboard or Mouse Pin Assignments

Pin Name DE1 DE2 UP3 UP2, Pin Function of Pin
UP1 Type

PS2_CLK H15 D26 12 30 Bidir. PS2 Connector

PS2_DATA J14 C24 13 31 Bidir. PS2 Connector

As seen in Figure 11.2, the computer system or FPGA chip in this case sends
commands to the PS/2 keyboard as follows:

1. System drives the clock line Low for approximately 60us to inhibit any new
keyboard data transmissions. The clock line is bi-directional.

2. System drives the data line Low and then releases the clock line to signal
that it has data for the keyboard.

3. The keyboard will generate clock signals in order to clock out the remaining
serial bits in the command.

4. The system will send its 8-bit command followed by a parity bit and a stop
bit.
5. After the stop bit is driven High, the data line is released.

Upon completion of each command byte, the keyboard will send an
acknowledge (ACK) signal, FA, if it received the data successfully. If the
system does not release the data line, the keyboard will continue to generate the
clock, and upon completion, it will send a ‘re-send command’ signal, FE or FC,
to the system. A parity error or missing stop bit will also generate a re-send
command signal.

218 Rapid Prototyping of Digital Systems Chapter 11

Clock I l l l I l l

Data i E | | E E | i |
Inhibit ; E ! \—*lf E i ‘ E \—JI
o /" t T
Svelom Data 0 0 1 0 1 1 1 1
ystem Da ,
Ready 8 Data Bits in Low to High Order g_ctjijParlty gt;)_p1
to Send=0 Command Code shown is F4H 1= =

Figure 11.2 System Transmission of a Command to PS/2 Device.

11.5 Scan Code Set 2 for the PS/2 Keyboard

PS/2 keyboards are available in several languages with different characters
printed on the keys. A two-step process is required to find the scan code. A key
number is used to lookup the scan code. Key numbers needed for the scan code
table are shown in Figure 11.3 for the English language keyboard layout.

ESC F1 F2 | F3) F4 F5 | Fe [F7) Fs Fo)((F10)(F11)((Fr2) ((EI0Y (SCro (payse
110 112 || 113 || 114 || 115 116 || 117 || 118 || 119 120 || 121 || 122 || 123 124 || 125 || 126

! 1 @ 2 # 3 % 5~ 5 & 7 (9) 0 - _ Backspace Insert | [Home F'gUp 'I:tﬂ
12 13 15 75 80 90 5 100 105
Tab (1 Del |("Ena |(PgDn
16 17 18 19 21 22 23 27 28 76 81 86
Caps Lock
30

CoJ | :

Figure 11.3 Key Numbers for Scan Code.

Each key sends out a make code when hit and a break code when released.
When several keys are hit at the same time, several make codes will be sent
before a break code.

Interfacing to the PS/2 Keyboard and Mouse 219

The keyboard powers up using this scan code as the default. Commands must
be sent to the keyboard to use other scan code sets. The PC sends out an
initialization command that forces the keyboard to use the other scan code.

The interface is much simpler if the default scan code is used. If the default
scan code is used, no commands will need to be sent to the keyboard. The keys
in Table 11.4 for the default scan code are typematic (i.e. they automatically
repeat the make code if held down).

Table 11.4 Scan Codes for PS/2 Keyboard.

Key# Make Break Key# Make Break Key# Make Break
Code Code Code Code Code Code

1 OE FO OE 31 1C FO 1C 90 77 FO 77
2 16 FO 16 32 1B FO 1B 91 6C FO 6C
3 1E FO 1E 33 23 FO 23 92 6B FO 6B
4 26 FO 26 34 2B FO 2B 93 69 FO 69
5 25 FO 25 35 34 FO 34 96 75 FO 75
6 2E FO 2E 36 33 FO 33 97 73 FO 73
7 36 FO 36 37 3B FO 3B 98 72 FO 72
8 3D FO 3D 38 42 FO 42 99 70 FO 70
9 3E FO 3E 39 4B FO 4B 100 7C FO 7C
10 46 FO 46 40 4C FO 4C 101 7D FO 7D
11 45 FO 45 41 52 FO 52 102 74 FO 74
12 4E FO 4E 43 5A FO 5A 103 7A FO 7A
13 55 FO 55 44 12 FO 12 104 71 FO 71
15 66 FO 66 46 1A FO 1A 105 7B FO 7B
16 oD FO OD 47 22 FO 22 106 79 FO 79
17 15 FO 15 48 21 FO 21 110 76 FO 76
18 1D FO 1D 49 2A FO 2A 112 05 FO 05
19 24 FO 24 50 32 FO 32 113 06 FO 06
20 2D FO 2P 51 31 FO 31 114 04 FO 04
21 2C FO 2C 52 3A FO 3A 115 Oc FO OC
22 35 FO 35 53 41 FO 41 116 03 FO 03
23 3C FO 3C 54 49 FO 49 117 0B FO OB
24 43 FO 43 55 4A FO 4A 118 83 FO 83
25 44 FO 44 57 59 FO 59 119 0A FO OA
26 4D FO 4D 58 14 FO 14 120 01 FO 01
27 54 FO 54 60 11 FO 11 121 09 FO 09
28 5B FO 5B 61 29 FO 29 122 78 FO 78
29 5D FO 5D 62 EO 11 EO FO 11 123 07 FO 07

The remaining key codes are a function of the shift, control, alt, or num-lock keys.

220 Rapid Prototyping of Digital Systems Chapter 11
Table 11.4 (Continued) - Scan Codes for PS/2 Keyboard.
No Shift or
Ke Shift* Num Lock On
y Num Lock
Make Break Make Break Make Break
76 EO0 70 EO FO 70 EO FO 12 E0 70 EOFO070E012 |[EO12E070 EO FO 70 EO FO 12
76 EO0 71 EO FO 71 EO FO 12 EO 71 EOFO071E012 | EO12EO 71 EO FO 71 EO TO 12
79 EO0 6B EOFO6B [EOF0 12 E0 6B EO FO 6B E0 12 | EO 12 E0 6B EO FO 6B EO FO 12
80 EO0 6C EOFOB6C | EOF0 12 E06C EO0 FO6C E0 12 || EO 12 E0 6C E0 FO 6C EO FO 12
81 E0 69 EO0 FO 69 EO FO 12 E0 69 EOFOB69 E0O 12 | EO 12 E0 69 EO0 FO 69 E0 FO 12
83 EO0 75 EO FO 75 EO FO 12 E0 75 EOF075E012 | EO12E075 EO FO 75 EO FO 12
84 E0 72 EO FO 72 EO FO 12 E0 72 EOF072E012 | E0O12E072 EO FO 72 EO FO 12
85 EO 7D EOFO7D | EOF012E07D EOFO7DEO12 || EO12E07D EO FO 7D EO FO 12
86 EO 7A EOFO7A | EOF012E07A EOFO7AE0 12 | EO12E07A EO FO 7A EO FO 12
89 EO0 74 EO FO 74 EO FO 12 EO 74 EOF074E012 | EO12E074 EO FO 74 EO FO 12

*

When the left Shift Key is held down, the 12 - FO 12 shift make and break is sent with the other scan
codes. When the right Shift Key is held down, 59 — FO 59 is sent.

Key Scan Code Shift Case *
Make Break Make Break
95 EO 4A EO FO 4A EO FO 12 EO 4A EO0 12 FO 4A

When the left Shift Key is held down, the 12 - FO 12 shift make and break is sent with the other scan
codes. When the right Shift Key is held down, 59 - FO 59 is sent. When both Shift Keys are down, both
sets of codes are sent with the other scan codes.

Key Scan Code Control Case, Shift Case Alt Case
Make Break Make Break Make Break
124 EO12E07C | EOFO7CEOFO0I2 E07C EO FO 7C 84 FO 84
Key # Make Code Control Key Pressed
126 * EI14 77 EIFO 14 FO 77 EO 7E EO FO 7E

*

This key does not repeat

11.6 The Keyboard FPGAcore

The following VHDL code for the keyboard FPGAcore shown in Figure 11.4
reads the scan code bytes from the keyboard. In this example code, no
command is ever sent to the keyboard, so clock and data are always used as
inputs and the keyboard power-on defaults are used.

To send commands, a more complex bi-directional tri-state clock and data
interface is required. The details of such an interface are explained in later
sections on the PS/2 mouse. The keyboard powers up and sends the self-test
code AA and 00 to the FPGA chip before it is downloaded.

Interfacing to the PS/2 Keyboard and Mouse 221

key board

keyboard _clk scan_code[7..0]
keyboard_data scan ready [—X
clock_48Vvhz
reset
read

TTXTY

inst

Figure 11.4 Keyboard FPGAcore

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY keyboard IS
PORT(keyboard_clk, keyboard_data, clock_48MHz ,

reset, read 1IN STD_LOGIC;
scan_code :OUT STD_LOGIC_VECTOR(7 DOWNTOO0);
scan_ready :OUT STD_LOGIC);

END keyboard;

ARCHITECTURE a OF keyboard IS

SIGNAL INCNT : STD_LOGIC_VECTOR(3 DOWNTO 0);

SIGNAL SHIFTIN : STD_LOGIC_VECTOR(8 DOWNTO 0);

SIGNAL READ_CHAR, clock_enable : STD_LOGIC;

SIGNAL INFLAG, ready_set : STD_LOGIC;

SIGNAL keyboard_clk_filtered : STD_LOGIC;

SIGNAL filter : STD_LOGIC_VECTOR(7 DOWNTO 0);
BEGIN

PROCESS (read, ready_set)

BEGIN

IF read ='1' THEN
scan_ready <="'0";
ELSIF ready_set'EVENT AND ready_set ='1' THEN
scan_ready <="'1";
END IF;
END PROCESS;
--This process filters the raw clock signal coming from the
-- keyboard using a shift register and two AND gates
Clock _filter:
PROCESS
BEGIN
WAIT UNTIL clock_48MHZ'EVENT AND clock_48MHz ='1";
clock_enable <= NOT clock_enabile;
IF clock_enable = ‘1" THEN
filter (6 DOWNTO 0) <= filter(7 DOWNTO 1) ;

222 Rapid Prototyping of Digital Systems Chapter 11

filter(7) <= keyboard_clk;
IF filter = "11111111" THEN
keyboard_clk_filtered <="1",
ELSIF filter = "00000000" THEN
keyboard_clk_filtered <="'0";
END IF;
END IF;
END PROCESS Clock_filter;
--This process reads in serial scan code data coming from the keyboard
PROCESS
BEGIN
WAIT UNTIL (KEYBOARD_CLK _filtered'EVENT AND KEYBOARD_CLK filtered = '1");
IF RESET ='0' THEN
INCNT <="0000";
READ_CHAR <=0}
ELSE
IF KEYBOARD_DATA ='0' AND READ_CHAR ='0' THEN
READ_CHAR <="'1}
ready_set <='0%
ELSE
-- Shift in next 8 data bits to assemble a scan code
IF READ_CHAR ="1' THEN
IF INCNT <"1001" THEN
INCNT <=INCNT + 1;
SHIFTIN(7 DOWNTO 0) <= SHIFTIN(8 DOWNTO 1);
SHIFTIN(8) <=KEYBOARD_DATA;
ready_set <='0"
-- End of scan code character, so set flags and exit loop
ELSE
scan_code <= SHIFTIN(7 DOWNTO 0);
READ_CHAR <='0}
ready_set <='1";

INCNT <="0000";
END IF;
END IF;
END IF;
END IF;
END PROCESS;
END a;

The keyboard clock is filtered in the Clock filter process using an 8-bit shift
register and an AND gate to eliminate any reflected pulses, noise, or timing
hazards that can be found on some keyboards. The clock signal in this process
is the 48 MHz system clock divided by two to produce a 24 MHz clock rate
using the clock enable signal. On DE1 and DE2 boards, a 50Mhz clock input is
used. The output signal, keyboard clk filtered, will only change if the input
signal, keyboard clk, has been High or Low for eight successive 24 MHz
clocks or 320ns. This filters out noise and reflected pulses on the keyboard
cable that could cause an extra or false clock signal on the fast FPGA chip. This
problem has been observed to occur on some PS/2 keyboards and mice and is
fixed by the filter routine.

Interfacing to the PS/2 Keyboard and Mouse 223

The RECV_KBD process waits for a start bit, converts the next eight serial data
bits to parallel, stores the input character in the signal, charin, and sets a flag,
scan_ready, to indicate a new character was read. . The scan_ready or input
ready flag is a handshake signal needed to ensure that a new scan code is read
in and processed only once. Scan ready is set whenever a new scan code is
received. The input signal, read, resets the scan ready handshake signal.

The process using this code to read the key scan code would need to wait until
the input ready flag, scan_ready, goes High. This process should then read in
the new scan code value, scan_code. Last, read should be forced High and Low
to clear the scan_ready handshake signal.

Since the set and reset conditions for scan_ready come from different processes
each with different clocks, it is necessary to write a third process to generate
the scan_ready handshake signal using the set and reset conditions from the
other two processes. Hitting a common key will send a 1-byte make code and a
2-byte break code. This will produce at least three different scan_code values
each time a key is hit and released.

A shift register is used with the filtered clock signals to perform the serial to
parallel conversion. No command is ever sent the keyboard and it powers up
using scan code set 2. Since commands are not sent to the keyboard, in this
example clock and data lines are not bi-directional. The parity bit is not
checked.

11.7 A Design Example Using the Keyboard FPGAcore

Here is a simple design using the Keyboard and LCD_Display FPGAcores. The
last six bytes of scan codes will appear in the LCD display (or on some FPGA
boards in the seven segment LEDs). The block code FIFO saves the last six
scan codes for the LCD display and is not used on the FPGA boards with a two
digit hex LED display.

K8y board

{ PS2 CLK o keyboard_clk scan_codel[7..0]

i PS2_DATA e keyboard_data scan_ready [—
o

lock_48Mhz

Code FiFG
Hex_Display_Data[39..0]
gt scan_codef7..0] Hex_display _data[39..0] - .4

£

scan_ready read f—
clock_48Mhz
reset

CIR 48z S I
H o inst3

LEB Bispiay

we | — reset LCD_RS SB[RS
clk_d8Mhz LCD_E OUTPLT ———"TCD E
P Hex_Display_Data[num_hex_digits*4-1..0] LCD_RW BT P TS RW
Hex_Display_Data[39..0] DATA_BUSJ[7..0] J}J}D\R DATA_BUSI[7..0]

inst1

Figure 11.5 Example design using the Keyboard FPGAcore.

