
1

EC463 LAB #1

Introduction and PS/2 Keyboard Interface with VHDL

Abstract

Learn to use the Altera Quartus development environment and the DE2 boards by implementing a small

hardware design that interfaces with a PS/2 keyboard and displays scan codes on LEDs and seven

segment displays.

1. Introduction

Use the Altera DE2 board to implement a simple hardware design. Describe its behavior using the VHDL

language and use Altera’s Quartus tools to synthesize and program the FPGA device. Use a VHDL simulator
to verify and debug the design.

The circuit you program into the FPGA will read the scan codes from a PS/2 keyboard and display them

on LEDs and HEX seven segment displays. The circuit should retain the last three bytes received from the
keyboard and display them on six seven segment displays.

You will learn to set up a project in the Altera Quartus tool, run a VHDL simulation, and compile and

download your design to the FPGA. VHDL is a hardware description language, and the process of using it is

very different than developing programs in C++ or Java. You will need these skills in later labs and while
you are developing your project.

2. Part 1: Top Level Design Setup

Quartus is Altera’s development environment for FPGAs. It consists of an IDE and a “compiler” that can
translate circuits described in VHDL into configuration data for the FPGA. Altera provides a variety of

reference designs for the DE2. For lab 1, we start with the DE2_Top design, which contains information
about what each pin on the FPGA is connected to and a top-level VHDL module with a port for each pin.

 Download the DE2_70_Top.zip from the class website and open the project. DE2_70_TOP.qpf

is the top Quartus project file.

 For Quartus to configure an FPGA, it must know which pins on the FPGA perform what roles

(i.e., what each is named). This information is board-specific since the pins on the FPGA can be
wired to arbitrary peripherals. An easy way of making the pin assignments when we use the

same pin names as in the DE2 User Manual is to import the assignments given in the file
called DE2_70_TOP_assignments.csv in the DE2_70_Top directory.

 Compile and download the supplied project to the board. If all goes well, the design should
spring to life.

3. Part 2: PS/2 Keyboard Interface Simulation

To test the expected functional correctness and performance of the designed circuit it is useful to
simulate the circuit. Functional simulation provides an excellent vehicle for ascertaining that the

circuit performs correctly as far as its functionality is concerned. It is also important to ensure that
the timing behavior of the circuit meets the specification requirements, which can be determined

by means of timing simulation.

2

To help you get started, a PS/2 keyboard hardware controller is provided (keyboard.vhd) [1-2]. This

controller can be used to read the PS/2 keyboard scan codes [3]. This controller converts the serial
data from the keyboard to parallel format to produce the scan code output. The I/O interface of a

PS/2 keyboard hardware controller is:

ENTITY keyboard IS
PORT
(

keyboard_clk, keyboard_data, clock_50MHz,
reset, read : IN STD_LOGIC;
scan_code : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
scan_ready : OUT STD_LOGIC

);
END keyboard;

In this lab, we will only look a keyboard-to-host communication. No command will be sent to the

keyboard. So, clock and data lines are driven by the keyboard. The provided controller filters out
reflected pulses, noise, timing hazard from the clock line by the clock_filter process. This filtering

process is achieved by determining if the clock pulses generated by the keyboard (keyboard_clk)

have been High or Low for at least 16 successive 50 MHz clock cycles. The controller waits for the

start bit then receives the 8 data bits, 1 parity bit, and a stop bit. It then assigns the received 8 data
bits to the scan_code output and sets the output scan_ready signal to High to indicate a new scan

code is available. scan_ready is reset to 0 when a read signal is asserted (High). Look at [1] for

more information.

Add this file to your project and set it as Top-Level Entity. Compile and simulate this vhdl file
using Quartus II. Verify the functionality of this controller. You should screen-capture the

timing waveforms to include in your lab report. Use the following settings in your simulations:

keyboard_clk: 1.25 MHz (800 ns/period)
keyboard_data: valid scan code for a key
clock_50MHz: 50 MHz (20 ns/period)

4. Part 3: PS/2 Keyboard Interface with LEDs

Develop a lab1_part3 module that has an interface as shown below. This module should read

the scan codes from a PS/2 keyboard and save the last three bytes received to byte3, byte2 and
byte1 respectively (byte1 is the last scan code received). The last three bytes are the outputs of

this module.

ENTITY lab1_part3 IS
PORT
(

ps2_clk, ps2_dat, clock_50, reset_n: in std_logic;
byte3, byte2, byte1: out std_logic_vector (7 downto 0)

);
END lab1_part3;

Instantiate this module in the top-level architecture in DE2_70_Top.vhd (note: remember to set

the DE2_70_Top.vhd as Top-Level entity). For this design:

 ps2_clk should be connected to PS2_CLK in the DE2_70_Top.vhd.

 ps2_dat should be connected to PS2_DAT.

 clock_50 should be connected to CLOCK_50.

3

 reset_n should be connected to KEY(0).

 Assign byte3 to LEDR[17:10] (red LEDs).

 Assign byte2 to LEDR[7:0] (red LEDs).

 Assign byte1 to LEDG[7:0] (green LEDs).

 Remember to disable the any constant assignments to LEDR and LEDG before you add your

lab1_part3 component.

 Download your design to configure the FPGA on the DE2 board. Connect a PS/2 keyboard to
the DE2 board and demonstrate your design.

 Document your design/debug/verification steps in your lab report.

6 Part 4: PS/2 Keyboard Interface with LEDs and Seven Segment Displays

Starting from the code developed for lab1_part3, create a module named lab1_part4 that has an

interface as shown below.

ENTITY lab1_part4 IS
PORT
(

ps2_clk, ps2_dat, clock_50, reset_n : in std_logic;
hex5,hex4,hex3,hex2,hex1,hex0: out std_logic_vector(6 downto 0);
byte3, byte2, byte1: out std_logic_vector (7 downto 0)

);
END lab1_part4 ;

Modify your design to convert byte3, byte2 and byte1 to six 8-bit patterns (including the dot)

that can be used to display six hex numbers on the 7-segment displays.

 Specifically, patterns to display 2 hex digits for byte3 should be assigned to hex5 and

hex4.

 Patterns to display 2 hex digits for byte2 should be assigned to hex3 and hex2.

 Patterns to display 2 hex digits for byte1 should be assigned to hex1 and hex0.

Instantiate this module in DE2_Top.vhd and set this file as the Top-Level Entity. For this design:

 reset_n should be connected to KEY(0).

 Assign byte3 to LEDR[17:10] (red LEDs).

 Assign byte2 to LEDR[7:0] (red LEDs).

 Assign byte1 to LEDG[7:0] (green LEDs).

 Assign the six hex-number patterns to HEX0, HEX1, HEX2, HEX3, HEX4 and HEX5 in

the DE2_Top.vhd.

 Remember to disable the any constant assignments to LEDR, LEDG, HEX0 to HEX5 before
you add your lab1_part4 component.

 Download your design to configure the FPGA on the DE2 board. Connect a PS/2 keyboard to
the DE2 board and demonstrate your design.

 Document your design/debug/verification steps in your lab report.

7 Reference

[1] “PS2 Keyboard Controller” based on Chapter 11 in Rapid Prototyping of Digital Systems, SOPC Edition,
New York, Springer, 2008.

[2] J.O. Hamblem, T. S. Hall, and M. D. Furman, Chapter 11 in Rapid Prototyping of Digital Systems, SOPC
Edition, New York, Springer, 2008.

[3] Keyboard Scan Codes, http://www.computer-engineering.org/ps2keyboard/scancodes2.html

