
NIOS–II Interrupt with C

Updated: January 2012

Sources:

Chapter 8 “Exception Handling” in Nios II Software Developer’s Handbook, May 2011.

“Using C with Altera DE2 Board.”

Introduction:

This set of notes explains the basic concepts and mechanism to support interrupts with

a NIOS-II processor.

Description:

The NIOS-II processor supports non-vector interrupts. It means that when an interrupt

occurs, the program jumps to a fixed memory location (specified by user in SOPC

Builder tool at system generation time). Interrupt is an exception caused by an explicit

request signal from an external device. When the internal interrupt controller is

implemented, a peripheral device can request a hardware interrupt by asserting one of

the Nios II processor’s 32 interrupt-request inputs, irq0 through irq31. A hardware

interrupt is generated if and only if all three of these conditions are true:

 The PIE bit of the status control register is one.

 An interrupt-request input, irqn, is asserted.

 The corresponding bit n of the ienable control register is one.

Registers (32 bit-wide) involved in interrupt processing are:

Register Name Register Contents

0 status This register controls/holds the state of the NIOS-ii processor

1 estatus This register holds a copy of status register during non-break

interrupt processing.

2 bstatus This register holds a copy of status register during break

interrupt processing.

3 ienable This register holds interrupt-enable bits for irq0 through irq31

4 ipending This register holds pending-interrupt bits that correspond to
irq0 through irq31

Upon hardware interrupt, the processor clears the PIE bit to zero, disabling further interrupts,

and performs the interrupt service routine to respond to the interrupt. The value of the ipending

control register shows which interrupt requests (IRQ) are pending. By peripheral design, an

IRQ bit is guaranteed to remain asserted until the processor explicitly responds to the

peripheral and clears the interrupt. Fig. 1 shows the relationship between ipending, ienable, PIE,

and the generation of an interrupt.

Fig. 1. Relationship between ipending, ienable, PIE, and hardware interrupt

In general, in order to successfully implement an interrupt-driven system based on a

NIOS-processor, users need to make sure that:

1. Hardware controllers request an interrupt by asserting irqn. This is mainly done

by SOPC Builder at system generation time.

2. The memory locations for “reset vector” and “exception vector” for the CPU are

defined. This is done by SOPC Builder at system generation time.

3. The enable bit(s) is/are set in the interrupt enable/disable control register which

is a part of the memory-mapped interface for that peripheral. This is done by the

C program. This step enables interrupt for the peripheral.

4. The corresponding bit(s) is/are set in the ienable (register 3) register. For example,

if irq0 is the desired interrupt event, then bit 0 in the ienable register should be set

to ‘1’. This is done by the C program. This step enables interrupt for the specific

peripherals in the NIOS-II side.

5. The global interrupt enable (PIE or bit 0) bit is set in the status register (register

0). This is done by the C program. This step enables the overall interrupt system

in the NIOS-II processor.

6. The appropriate functions are provided to handle the reset and interrupt events.

These functions will be fixed and given.

7. The user interrupt service routines are provided to handle a specific interrupt

event. This is done in C or assembly language by users.

General I/O Interrupt Example:

Recall that the PIO interface contains four controlling registers shown in Fig. 2. Each

register is n bits long (maximum 32 bits).

Fig. 2. Registers in the PIO interface

The registers have the following purpose:

 Data register holds the n bits of data that are transferred between the PIO

interface and the Nios II processor. It can be implemented as an input, output, or

a bidirectional register by the SOPC Builder.

 Direction register defines the direction of transfer for each of the n data bits when

a bidirectional interface is generated. This register may not exist, depending on

the hardware configuration. If a register is not present, reading the register

returns an undefined value, and writing the register has no effect.

 Interrupt-mask register is used to enable interrupts from the input lines connected

to the PIO. This register may not exist, depending on the hardware

configuration. If a register is not present, reading the register returns an

undefined value, and writing the register has no effect.

 Edge-capture register indicates when a change of logic value is detected in the

signals on the input lines connected to the PIO. Writing any value to Edge-capture

register clears all bits to 0.

Let’s look at a Nios-II system that includes the components as shown in Fig. 3.

Fig. 3. PIO ports with base addresses

 The base address for the red leds PIO, red_leds, is at 0x00011020.

 The base address for the pushbuttons, KEYs, is at 0x000110b0. In addition, when

an appropriate edge (falling edge in this example) is detected, irq0 will be

asserted to request an interrupt with the Nios-II processor.

A sample program (interrupt_example.c) that responds to KEY3 interrupt is provided. Some of

the parts in this example are examined next.

the_reset function:

A function (the_reset) to deal with a reset event is shown below. The function provides a simple

reset mechanism by performing a branch to the main program. Note that this function includes

nested assembly language in a C function. This function can be used as is without modification.

/* The assembly language code below handles CPU reset processing */
void the_reset (void) __attribute__ ((section (".reset")));
void the_reset (void)
/**

Reset code. By giving the code a section attribute with the name ".reset"
we allow the linker program to locate this code at the proper reset vector
address. This code just calls the main program.

**/
{

asm (".set noat"); // Magic, for the C compiler

Base address

irq0 is assigned

for KEYs

asm (".set nobreak"); // Magic, for the C compiler
asm ("movia r2, main"); // Call the C language main program
asm ("jmp r2");

}

the_exception function:

A function (the_exception) to deal with an exception event which includes external interrupt is

shown below. The function represents a general exception handler that can be used with

any C program. It includes assembly language code to save the contents of the registers

and to call an interrupt service routine named interrupt_handler. If the interrupt service

routine is named interrupt_handler, this function can be used as is without modification.

/*
The assembly language code below handles CPU exception processing. This code
should not be modified; instead, the C language code in the function
interrupt_handler() can be modified as needed for a given application.
*/
void the_exception (void) __attribute__ ((section (".exceptions")));
void the_exception (void)
/***
Exceptions code. By giving the code a section attribute with the name
".exceptions" we allow the linker program to locate this code at the proper
exceptions vector address. This code calls the interrupt handler and later
returns from the exception.
**/
{
asm (".set noat"); // Magic, for the C compiler
asm (".set nobreak"); // Magic, for the C compiler
asm ("subi sp, sp, 128");
asm ("stw et, 96(sp)");
asm ("rdctl et, ctl4");
asm ("beq et, r0, SKIP_EA_DEC"); // Interrupt is not external
asm ("subi ea, ea, 4"); /* Must decrement ea by one instruction
for external interupts, so that the interrupted instruction will be run */

asm ("SKIP_EA_DEC:");
asm ("stw r1, 4(sp)"); // Save all registers
asm ("stw r2, 8(sp)");
asm ("stw r3, 12(sp)");
asm ("stw r4, 16(sp)");
asm ("stw r5, 20(sp)");
asm ("stw r6, 24(sp)");
asm ("stw r7, 28(sp)");
asm ("stw r8, 32(sp)");
asm ("stw r9, 36(sp)");
asm ("stw r10, 40(sp)");
asm ("stw r11, 44(sp)");
asm ("stw r12, 48(sp)");
asm ("stw r13, 52(sp)");
asm ("stw r14, 56(sp)");
asm ("stw r15, 60(sp)");
asm ("stw r16, 64(sp)");
asm ("stw r17, 68(sp)");
asm ("stw r18, 72(sp)");

asm ("stw r19, 76(sp)");
asm ("stw r20, 80(sp)");
asm ("stw r21, 84(sp)");
asm ("stw r22, 88(sp)");
asm ("stw r23, 92(sp)");
asm ("stw r25, 100(sp)"); // r25 = bt (skip r24 = et, because it is
saved above)
asm ("stw r26, 104(sp)"); // r26 = gp
// skip r27 because it is sp, and there is no point in saving this
asm ("stw r28, 112(sp)"); // r28 = fp
asm ("stw r29, 116(sp)"); // r29 = ea
asm ("stw r30, 120(sp)"); // r30 = ba
asm ("stw r31, 124(sp)"); // r31 = ra
asm ("addi fp, sp, 128");

asm ("call interrupt_handler"); // Call the C language interrupt handler

asm ("ldw r1, 4(sp)"); // Restore all registers
asm ("ldw r2, 8(sp)");
asm ("ldw r3, 12(sp)");
asm ("ldw r4, 16(sp)");
asm ("ldw r5, 20(sp)");
asm ("ldw r6, 24(sp)");
asm ("ldw r7, 28(sp)");
asm ("ldw r8, 32(sp)");
asm ("ldw r9, 36(sp)");
asm ("ldw r10, 40(sp)");
asm ("ldw r11, 44(sp)");
asm ("ldw r12, 48(sp)");
asm ("ldw r13, 52(sp)");
asm ("ldw r14, 56(sp)");
asm ("ldw r15, 60(sp)");
asm ("ldw r16, 64(sp)");
asm ("ldw r17, 68(sp)");
asm ("ldw r18, 72(sp)");
asm ("ldw r19, 76(sp)");
asm ("ldw r20, 80(sp)");
asm ("ldw r21, 84(sp)");
asm ("ldw r22, 88(sp)");
asm ("ldw r23, 92(sp)");
asm ("ldw r24, 96(sp)");
asm ("ldw r25, 100(sp)"); // r25 = bt
asm ("ldw r26, 104(sp)"); // r26 = gp
// skip r27 because it is sp, and we did not save this on the stack
asm ("ldw r28, 112(sp)"); // r28 = fp
asm ("ldw r29, 116(sp)"); // r29 = ea
asm ("ldw r30, 120(sp)"); // r30 = ba
asm ("ldw r31, 124(sp)"); // r31 = ra

asm ("addi sp, sp, 128");

asm ("eret");
}

interrupt_handler:

The interrupt_handler code determines which exception has occurred, by determining

which bit in the pending register is set. It then performs the appropriate operations or

calls the appropriate function to respond to the interrupt. In this example, the

interrupt_handler function determines if KEY3 is pressed (causing an interrupt request

iqr0 to be asserted) and calls keys_isr() function to respond to this interrupt. Note that

code in keys_isr() function can be nested inside the interrupt_handler function also.

/**
Interrupt Service Routine
Determines what caused the interrupt and calls the appropriate subroutine.

ipending - Control register 4 which has the pending external interrupts
**/
void interrupt_handler(void)
{
int ipending;
ipending = __builtin_rdctl(4); //Read the ipending register

if ((ipending & 0x01) > 0) //If irq0 is high, run keys_isr,
otherwise return
{

keys_isr();
}
return;
}

Note the syntax for

ipending = __builtin_rdctl(4);

The ipending register (or register 4) is read and stored in the variable ipending.

keys_isr:

This function performs tasks that deal with the interrupt form KEY3. In this example, it reads

and assigns the switch value to red leds. Not that the statement

*(pushbuttons+3) = 0;

is used to clear the interrupt and to prepare for the next interrupt request.

void keys_isr(void)
{
int * red_leds = (int *) RED_LEDS_BASE_ADR;
volatile int * pushbuttons = (int *) KEYs_BASE_ADR;
volatile int * switches = (int *) SWITCHES_BASE_ADR;

*(red_leds) = *(switches); //Make LEDs light up to match switches
*(pushbuttons+3) = 0; //Disable the interrupt by writing to

edgecapture register of KEYs PIO
return;

}

Using Altera Monitor Program:

Note that when you create an Altera Monitor Program project for your

example/lab/project and if interrupt is used, you will need to reserve space for the

exception and interrupt handler codes at the top of the memory space. You can do this by

specifying the offset value for .text section and .data section. A value of 0x400 will be

enough as shown in Fig. 4.

Fig. 4. Memory settings with offset for interrupt/exception handler code

