
Parallel Input/Output (PIO) IP

Updated: January 2012

Source: Chapter 9 in Embedded Peripheral IP User Guide, July 2010.

Introduction:

This chapter explains the parallel input/output (PIO) core with Altera’s Avalon

Memory-Mapped (Avalon MM) interface. This IP can be used to connect to on-chip user

logic or to I/O pins such as LEDs, switches, etc.

Description:

The PIO interface provides data transfer in either input or output (or both) directions.

The transfer is done in parallel and it may involve from 1 to 32 bits. The number of bits

and the direction of transfer are specified by the user through Altera’s SOPC Builder (at

the time a Nios II based system is being implemented). A Nios-II processor can interface

with these ports by reading and writing the register-mapped Avalon MM interface.

The PIO component has a number of options for customizing general-purpose I/O

interfaces. PIO interfaces can be specified as input only, output only, or bidirectional. If

bidirectional is selected, then the direction of each pin must be set in the direction

register at run-time via software. Input PIO interfaces can also have various interrupt

and edge capture capabilities including the capturing of either or both edges and edge

or level sensitive interrupt triggers. In general, the PIO interface contains four

controlling registers shown in Fig. 1.

Fig. 1. Registers in the PIO interface



Each register is n bits long (maximum 32 bits). The registers have the following

purpose:

 Data register holds the n bits of data that are transferred between the PIO

interface and the Nios II processor. It can be implemented as an input, output, or

a bidirectional register by the SOPC Builder.

 Direction register defines the direction of transfer for each of the n data bits when

a bidirectional interface is generated. This register may not exist, depending on

the hardware configuration. If a register is not present, reading the register

returns an undefined value, and writing the register has no effect.

 Interrupt-mask register is used to enable interrupts from the input lines connected

to the PIO. This register may not exist, depending on the hardware

configuration. If a register is not present, reading the register returns an

undefined value, and writing the register has no effect.

 Edge-capture register indicates when a change of logic value is detected in the

signals on the input lines connected to the PIO. Writing any value to Edge-capture

register clears all bits to 0.

Not all of these registers are generated in a given PIO interface. For example, the

Direction register is included only when a bidirectional interface is specified. The

Interrupt-mask and Edge-capture registers are included if interrupt-driven input/output

is used. The PIO registers are accessible as if they were memory locations. Any base

address that has the four least significant bits equal to 0 can be assigned to a PIO (at the

time it is implemented by the SOPC Builder). This becomes the address of the Data

register. The addresses of the other three registers have offsets of 4, 8, or 12 bytes (1, 2,

or 3 32-bit words) from this base address.

General I/O Example:

Basic operation for these PIO ports including reading and writing data to the register at

the base address (offset of 0 byte) of the component. For example, using SOPC Builder

tool, a nios_system, which includes an 18-bit input PIO port for the slider switches and

an 18-bit output PIO port for the red leds, is generated. Fig. 2 shows the relevant PIO

components in the nios_system generated by the SOPC Builder.

Fig. 2. PIO ports with base addresses

Base address



As shown in Fig. 2,

 The base address for the switches PIO, switches, is at 0x00011000

 The base address for the red leds PIO, red_leds, is at 0x00011020.

 The base address for the pushbuttons, KEYs, is at 0x000110b0.

Once the nios_system has been appropriately instantiated in the design, user

application executed on a Nios-ii processor can directly access these two ports by the

registers at their base addresses. For example, consider the following C code:

1. volatile int * SWITCHES_ptr = (int *) 0x00011000;

2. volatile int * RED_LEDS_ptr = (int *) 0x00011020;

3. *(RED_LEDS_ptr) = *(SWITCHES_ptr);

 Line 1 defines a pointer, SWITCHES_ptr, that points to the base address of switches.

 Line 2 defines a pointer, RED_LEDS_ptr, that points to the base address of red_leds.

 Line 3 shows a simple assignment operation. The value stored in the register at

the base address (pointed to by SWITCHES_ptr) of switches is read. This value is

then written to the register at base address (pointed to by RED_LEDS _ptr) of

red_leds.

This example shows how a PIO port is accessed (read or write operation).

PIO Polling Example:

Polling is a technique to monitor an I/O port and to trigger an appropriate action when

a change is detected. The general idea is that the processor periodically reads the I/O

port and determines if there is a change. If there is a change, the processor will execute

the subset of code to deal specifically with this change. Otherwise, the processor will

continue with normal operations.

For example, let’s consider the same nios_system shown in Fig. 2 and the following code.

1. volatile int * SWITCHES_ptr = (int *) 0x00011000;

2. volatile int * RED_LEDS_ptr = (int *) 0x00011020;

3. volatile int * KEYS_ptr = (int *) 0x000110b0;

4. if ((*(KEYs_ptr + 0x3) > 0x0)

5. {

6. *(RED_LEDS_ptr) = *(SWITCHES_ptr);

7. *(KEYs_ptr+0x3) = 0x0;

8. }



 Line 1 defines a pointer, SWITCHES_ptr, that points to the base address of switches.

 Line 2 defines a pointer, RED_LEDS_ptr, that points to the base address of red_leds.

 Line 3 defines a pointer, KEYS_ptr, that points to the base address of KEYs.

 Line 4 examines if any bit in the Edge-capture register of the pushbutton port is

set. If it is, the condition (*(KEYs_ptr + 0x3) > 0x0) will be true and line 6 and

7 will be executed next. Note that the address of the Edge-capture register is

located at (base address + 12 bytes) or (base address + 3 words). Since KEYs_ptr

is defined as an integer pointer, word offset can be used as shown in line 4.

 Line 6 shows a simple assignment operation as in previous example.

 Line 7 indicates that 0 (or any value) is written to the Edge-capture register which

clears all bits. This clearing process has to be done before a new change can be

detected.

In this example, a value represented by switches is assigned to red_leds only when one of

the pushbuttons is pressed.

PIO Intterupt Example:

Will be discussed later.


