
1

EC463 LAB #2

Introduction to Altera SOPC Builder and NIOS II System

Abstract

The purpose of this lab is to learn how to create a computer system and implement it in an FPGA device. The
system will consist of an Altera Nios II processor and input/output interfaces that connect to switches,

displays and a PS/2 keyboard on the Altera DE2 board. We will use the Quartus II and SOPC Builder

software to generate the hardware portion of the system. We will use the Altera Monitor Program software to
compile, load and run application (C) programs.

1. Introduction

First, Quartus II and SOPC Builder software is used to generate a Nios II system that uses of parallel
input/output interfaces. Then, the designed Nios II system can be instantiated in the top level design

(DE2_70_Top in this case) to interface with the LEDs, HEX displays, switches, pushbuttons and a PS/2
keyboard.

Application programs in C language must be developed to drive various hardware components, inputs or

outputs. In this lab, communication with a PS/2 keyboard will be achieved using parallel input/output (PIO)

interfaces. Interfacing with LEDs, HEX displays, switches and pushbuttons are also achieved via PIO
interfaces.

Refer to the “Parallel Input/Output (PIO) IP” handout and “PIO Core” chapter in the “Embedded Peripheral

IP User Guide” for more information about the parallel input/output (PIO) core with Avalon interface
(Section I, chapter 9) [1-2].

2. Lab 2 – Part 1: Introduction to the Altera SOPC Builder using VHDL

Complete the “Introduction to the Altera SOPC Builder Using VHDL Design” tutorial (c programming language

only) which you can access via the syllabus page [3]. This tutorial introduces the development flow of
implementing a simple Nios II system.

For more information, consult:

 Nios II Hardware Development Tutorial [4]

 Quartus II Handbook Volume 4: SOPC Builder [5]

 Altera Monitor Program Tutorial [6]

 Introduction to the Altera Nios II Soft Processor [7]

 Introduction to the Altera SOPC Builder [8]

3. Lab 2 - Part 2: Implementing a Simple Nios II System

In this part, we will build a simple system that is similar to the system described in Part 1. This will be the
base system for this lab. The Nios II system will have parallel I/O capabilities that require the use of PIO

interfaces. These PIOs can be attached directly to pushbuttons, switches, LEDs, and similar I/O devices.

They can also be attached to relatively simple or low bandwidth interfaces that don’t have a large amount
of overhead associated with data transmission. Examples of these types of interfaces include PS/2, I2C,

SPI, and parallel data interfaces. In part 5, PIO interfaces are required to communicate with a PS/2
keyboard in this lab.



2

The block diagram for the Nios II system designed for this lab is shown in Fig. 1.

Nios II
Processor

Avalon Switch Fabric

On-chip
Memory

Switches
PIO (input)

SW(17:0)

Green LEDs
PIO (output)

LEDG(8:0)

Red LEDs
PIO (output)

LEDR(17:0)

KEY
PIO (input)

KEY(3:0)

18 9 18

HEX
PIO (output)

8

HEX7(7:0)

HEX
PIO (output)

8

HEX0(7:0)

Cyclone II FPGA

4

SCAN CODE
PIO (input)

8

SCAN_CODE(7:0)

SCAN READY
PIO (input)

SCAN_READY

SCAN READY
PIO (output)

READ

Fig. 1. Block diagram for Nios II system

Using Quartus II and SOPC Builder to realize the required hardware components as follow:

1. As in lab 1, use the DE2_70_TOP project as the starting point. Assign the pins needed to make the

necessary connections, by importing the pin-assignment file DE2_pin_assignments.csv.
2. Use the SOPC Builder to generate the desired system, called nios_system, which comprises:

a. On-chip memory - RAM mode and 32 Kbytes in size (leave all other options at their

default settings).

b. Nios II/s processor with JTAG Debug Module Level 1

i. Do not choose the Hardware Multiply and Hardware Divide options
ii. Choose on-chip memory as the location for Reset and Exception vectors

iii. Leave all other options for the processor at their default settings.

c. An 18-bit PIO input circuit, which will be connected to toggle switches.

d. A 9-bit PIO output circuit, which will be connected to green LEDs.
e. A 18-bit PIO output circuit, which will be connected to red LEDs.

f. An 8-bit PIO output circuit, which will be connected HEX7.

g. An 8-bit PIO output circuit, which will be connected HEX6.
h. An 8-bit PIO output circuit, which will be connected HEX5.

i. An 8-bit PIO output circuit, which will be connected HEX4.
j. An 8-bit PIO output circuit, which will be connected HEX3.

k. An 8-bit PIO output circuit, which will be connected HEX2.
l. An 8-bit PIO output circuit, which will be connected HEX1.

m. An 8-bit PIO output circuit, which will be connected HEX0.
n. A 4-bit PIO input circuit that will be connected to 4-bit KEY. Configure this port to be an

input port that is 4-bit wide. Also, in the Input Options tab select the following:

i. Synchronously capture feature activated by the Falling edge for the Edge capture



3

register

ii. Generate IRQ interrupt on Edge.
o. An 8-bit PIO input circuit, which will be connected to the Scan_Code received from the

keyboard controller.
p. A one-bit PIO input circuit, which will be connected to the Scan_Ready signal received

from the keyboard controller. In the Input Options tab select the following:
i. Synchronously capture feature activated by the Falling edge for the Edge capture

register
ii. Generate IRQ interrupt on Edge.

q. A one-bit PIO output circuit, which will be connected to the Read signal to the keyboard

controller.

3. The SOPC Builder will automatically assign the names such as pio_0, pio_1, pio_2, etc. to these PIO
components. Change these names to words that are more meaningful in the context of a specific

design. For example, we can choose the names scan_code, green_LEDs, red_LEDs, hex_displays, etc.

4. Select System > Auto-Assign Base Addresses and System > Auto-Assign IRQ. Observe (and

record for future reference) the assigned addresses and click on the Generate button to generate
the specified system.

5. Instantiate the generated nios_system in the DE2_70_TOP project and also define the required

connections to the switches and LEDs on the DE2_70 board. Connect the reset input of the

nios_system to the pushbutton KEY(0). Keep in mind that the pushbuttons are active low.

6. Compile the Quartus II project and configure the FPGA with your design.
7. Document your design/debug/verification steps in your lab report.

In the next three parts we will use the designed system to investigate different aspects of performing I/O

tasks. We will use the Altera Monitor Program to handle the C code written by you to perform each task.

4. Lab 2 - Part 3: Interfacing with PIOs Using C

Perform the following:

 Write a C program named lab2_part3.c that reads the contents of the switches(7:0), displays the
corresponding value on the green LEDs (7:0), adds this number to a sum that is being

accumulated, and displays the sum on the red LEDs (18 bits) and HEX displays (HEX3, HEX2,
HEX1 and HEX0).

 Open the Altera Monitor Program software and create a new project.

 Specify that you wish to use the hardware that you designed, by choosing Custom System. Find
the file nios_system.ptf, which represents the designed Nios II system.

 Specify that a C program is to be used and that the program is given in the file lab2_part3.c.

 Make sure that the USB-Blaster is used to provide the connection between the DE2 board and the

host computer.

 Specify that your program has to be loaded in the on-chip memory. Since your system does not
include any other memory modules, this choice will be made by default.

 Click Finish.

 In the monitor window, select Actions > Compile & Load to assemble and download your

program.

 Note that the C program will be converted to the Nios II assembly language. You don’t need to
know the assembly language for Nios II but it will help to trace your program in the debugging

step.

 Single-step through the program and verify its correctness by inputting several numbers. Note
that single-stepping through the program will allow you to change the input numbers without



4

reading the same number multiple times.

 Now, run the program and then stop it. Observe what happens and explain the observed
behavior.

 Run the program again and then press the Reset pushbutton KEY(0). What happens in this case?

 Document your design/debug/verification steps in your lab report.

5. Lab 2 - Part 4: Interfacing with PIOs Using C and Handshaking

In this part, we will use the polling approach to read the numbers entered via the toggle switches. The

desired operation is that the user provides the next number by setting the toggle switches accordingly

and then pressing a pushbutton, KEY(3), KEY(2) or KEY(1), to indicate that the number is ready. A

commonly-used I/O scheme, known as polling, is to use a status flag which is originally cleared to 0. This

flag is then set to 1 as soon as the I/O device interface is ready for the next data transfer (data ready to be
read by the processor). Upon transferring the data, the flag is again cleared to 0. Thus, the processor can

poll the status flag to determine when an I/O data transfer should be made.

In our case, the I/O device is the user who manually sets the toggle switches and presses the pushbutton
key. The I/O interface that provides the desired control is the one-bit PIO circuit generated in Part 2,

which includes the edge-capture capability. Perform the following:

 Modify your application program from Part 3 and save it as lab2_part4.c. This program should

accept a new number when a pushbutton (KEY(3), KEY(2) or KEY(1)) is pressed. This action will
set the corresponding bit in the edge-capture register to 1. After reading the new number, your

program has to clear the flag by writing a 0 (or any numbers) into the edge-capture register.

 Download and run your program to demonstrate that it works properly. The program should

run continuously and a new number should be added each time the pushbutton KEY(3) is
pressed.

 Document your design/debug/verification steps in your lab report.

6. Lab 2 - Part 5: Interfacing with a PS/2 Keyboard Using C

Write a C program named lab2_part5.c to demonstrate the new keyboard interface. Requirements for this

part are:

 Use keyboard.vhd file as a keyboard controller to read in the serial scan codes [9-10]. Note that this

controller will communicate with Nios II processor though PIO interfaces.

 Polling technique should be used to monitor changes in scan_ready signal.

 Your C program should save the last four scan codes (four bytes) received (for example, byte4,
byte3, byte2 and byte1). Convert the three scan codes to eight 8-bit patterns that can be used to
display six hex numbers on the 7-segment LEDs. Specifically,

o Patterns to display 2 hex digits for byte4 should be assigned to hex7 and hex6

o Patterns to display 2 hex digits for byte3 should be assigned to hex5 and hex4
o Patterns to display 2 hex digits for byte2 should be assigned to hex3 and hex2

o Patterns to display 2 hex digits for byte1 should be assigned to hex1 and hex0

 Download and run your program to demonstrate that it works properly.

 Document your design/debug/verification steps in your lab report.

7. Lab 2 - Bonus: Interfacing with a PS/2 Keyboard Using Interrupt in C

Write a C program named lab2_bonus.c to demonstrate the new keyboard interface using interrupt. This

application program should be very similar to part 5, except that an interrupt-driven scheme should be

used instead of polling. An interrupt should occur when a new scan code is ready.



5

8. Reference

[1] “Parallel Input/Output (PIO) IP,” 2012.

[2] Altera, “Embedded Peripheral IP User Guide,” 2010.

[3] Altera, “Introduction to the Altera SOPC Builder Using VHDL Design,” 2009.

[4] Altera, “Nios II Hardware Development Tutorial,” 2009.

[5] Altera, “Quartus II Handbook Volume 4: SOPC Builder,” 2010.

[6] Altera, “Altera Monitor Program Tutorial,” 2010.

[7] Altera, “Introduction to the Altera Nios II Soft Processor,” 2008.

[8] Altera, “Introduction to the Altera SOPC Builder,” 2010.

[9] “PS2 Keyboard Controller” based on Chapter 11 in Rapid Prototyping of Digital Systems, SOPC Edition,
New York, Springer, 2008.

[10] J. O. Hamblen, T. S. Hall, and M. D. Furman, Rapid Prototyping of Digital Systems, SOPC Edition, New
York, Springer, 2008.


