
Video Out IP Cores
for Altera DE Boards

For Quartus II 8

1 Overview

The Altera University Program video out IP cores are a suite of four distinct circuits, that simplify the use of the VGA
digital-to-analog converter (DAC) on the Altera DE boards and the two Terasic LCD daughtercards, specifically the
LCD (TRDB_LCM) and the touchscreen LCD (TRDB_LTM). The first circuit, named VGA Controller, creates the
timing information required by the LCD daughtercards or by the on-board VGA DAC. Two other video out cores,
Character Buffer and Pixel Buffer, store data to be displayed by the VGA Controller. Both buffers can be used
simultaneously by merging their two video out streams using the final video out core, the Alpha Blending IP core.
These cores can be interconnected using their Avalon Streaming Interface ports, and, when combined, they greatly
simplify communication with the VGA DAC and the LCD daughtercards. Users can easily integrate these cores
with other components through the SOPC Builder tool.

2 VGA Controller

The VGA Controller generates the timing signals required for the VGA DAC and LCD daughtercards, including
horizontal and vertical synchronization signals. The timing information generated by the VGA Controller produces
screen resolutions of 640× 480, 320× 240 and 800× 480 pixels for the VGA DAC, LCD (TRDB_LCM) and the
Touchscreen LCD (TRDB_LTM), respectively. To generate the timing information correctly, a 50 MHz clock has to
be provided to the VGA Controller. This is the default clock in the SOPC Builder software and on the DE boards.
In addition, a 25 MHz clock signal must be supplied to the VGA DAC or the LCD daughtercards. For the VGA
DAC, this clock can be supplied via the VGA_CLK pin. The External Clocks for DE Board Peripherals core, also
provided by the Altera University Program, can generate the required 25 MHz clock; see its documentation for more
details.

Data is provided to the VGA Controller via its Avalon Streaming Interface. This interface allows users to connect
one of the two image buffers to the VGA Controller, or the interface can be connected to the Alpha Blending Core.

2.1 Instantiating the Core in SOPC Builder

Designers use the VGA Controller’s configuration wizard in the SOPC Builder to specify the desired features. The
following list describes the available options in the configuration wizard.

• DE Board — Used to specify appropriate Altera DE board.

• Video Out Device — Choose the device being used, and by extension the screen resolution.

Altera Corporation - University Program
March 2009

1

http://university.altera.com/

VIDEO OUT IP CORES FOR ALTERA DE BOARDS For Quartus II 8

3 Character Buffer

The Character Buffer’s unit of operation is a character. A device can send ASCII character codes to the Character
Buffer’s Avalon interface avalon_char_slave. The Character Buffer handles the conversion of characters to pixels,
and sends them to the VGA Core via an Avalon Streaming Interface.

Upon initialization or reset, the Character Buffer sets all the characters to “space”, so no characters will be displayed.
This “clear screen” operation can take up to 5000 clock cycles to finish.

In the Character Buffer, the resolution is defined by the number of characters per line and the number of lines
per screen. The Character Buffer currently supports only one resolution per output device, where each character
occupies an 8× 8 VGA pixel group. Therefore, 80 characters can be displayed per line with 60 lines, since the
Character Buffer is streaming the pixel values to the VGA Core, which in turn has a resolution of 640×480. For
the LCD daughtercards, the resolution is 40×30 and 50×30 for the LCD (TRDB_LCM) and the Touchscreen LCD
(TRDB_LTM), respectively.

The Character Buffer currently supports only one color option, which is that characters are drawn in white with a
transparent background.

3.1 Address Format

When the Character Buffer is instantiated in an SOPC Builder system, it is assigned a base address, as a memory-
mapped device. Each character in the buffer then has a unique address in this addressable space. The coordinate
system of the Character Buffer is illustrated in Figure 1. As the figure indicates, each character location is identified
by an x,y coordinate, with 0,0 being the top-left corner of the screen. The address in the buffer of each location
is formed by combining the x,y coordinates as shown in Figure 2a, and then adding this value to the base address.
All data for the Character Buffer is character (8-bit) addressable. The supported addressing mode is called the X-Y
mode.

x

y

0 1 2 3 4

1

2

3

....

...
.

0 1 2 3 4
0

Figure 1. Character coordinate system

The values of m and n are related to the VGA Core’s resolution as follows:

m = cei l (l og2X)

n = cei l (log2Y)

where X and Y are the resolution in the X, Y directions, respectively.

2 Altera Corporation - University Program
March 2009

http://university.altera.com/

VIDEO OUT IP CORES FOR ALTERA DE BOARDS For Quartus II 8

31 0
X coordinate (m bits)Y coordinate (n bits)Not used

a) X-Y address format

31 06
X coordinate

712
Y coordinate

13
Not used

b) X-Y address format for the 80×60 resolution

Figure 2. Character address format

For example, for 80×60 resolution we have

m = cei l (log280) = 7

n = cei l (log260) = 6

and this resolution leads to the address format shown in Figure 2b.

3.2 Instantiating the Core in SOPC Builder

Designers use the Character Buffer’s configuration wizard in the SOPC Builder to specify the desired features. The
following list describes the available options in the configuration wizard.

• Video Out Device — Choose the device being used, and by extension the screen resolution.

• Enable Transparency — Enables the output of α data for use with the Alpha Blending core. This setting must
be enabled if the Character Buffer and Pixel Buffer are to be used together.

3.3 Software Programming Model

3.3.1 Register Map

Device drivers control and communicate with the Character Buffer through two Avalon memory mapped interfaces,
named avalon_control_slave and avalon_char_slave. The avalon_char_slave interface has a one byte data width
for ASCII characters and is addressed as described in the Character Buffer’s Address Format section above. The
avalon_char_slave interface consists of the two registers shown in Table 1. The Control register provides the ability
to clear the screen by using the R bit, which is bit 16 of this register. The R bit remains set to 1 until all characters
have been cleared, and then R is set to 0. The Resolution register, which is read-only, provides two values: the
number of characters per line , in bits 15-0, and the number of lines per screen, in bits 31-16.

Table ?? shows the format of the avalon_control_slave registers.

Altera Corporation - University Program
March 2009

3

http://university.altera.com/

VIDEO OUT IP CORES FOR ALTERA DE BOARDS For Quartus II 8

Table 1. Character Buffer register map
Offset Register R/W Bit Description

in bytes Name 31. . . 17 16 15. . . 0
0 Control RW (1) R (1)

4 Resolution R Lines Chars

Notes on Table 1:

(1) Reserved. Read values are undefined. Write zero.

3.3.2 Programming with the Character Buffer

The Character Buffer is packaged with C-language functions that are accessible through the hardware abstraction
layer (HAL). These functions implement the basic operations that control the Character Buffer.

To use the functions, the C code must include the statement:

#include "altera_up_avalon_character_buffer.h"

3.3.3 alt up char buffer init

Prototype: void alt_up_char_buffer_init(alt_up_char_buffer_dev

*char_buffer)
Include: <altera_up_avalon_character_buffer.h>
Parameters: char_buffer – struct for the character buffer device
Description: Initialize the name of thestructure.

3.3.4 alt up char buffer open dev

Prototype: alt_up_char_buffer_dev* alt_up_char_buffer_open_dev(const
char *name)

Include: <altera_up_avalon_character_buffer.h>
Parameters: name – the character buffer component name in SOPC Builder.
Returns: The corresponding device structure, or NULL if the device is not found
Description: Opens the character buffer device specified by name .

4 Altera Corporation - University Program
March 2009

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://university.altera.com/

VIDEO OUT IP CORES FOR ALTERA DE BOARDS For Quartus II 8

3.3.5 alt up char buffer draw

Prototype: int alt_up_char_buffer_draw(alt_up_char_buffer_dev

*char_buffer, unsigned char ch, unsigned int x,
unsigned int y)

Include: <altera_up_avalon_character_buffer.h>
Parameters: ch – the character to draw

x – the x coordinate
y – the y coordinate

Returns: 0 for success, -1 for error (such as out of bounds)
Description: Draw a character at the location specified by (x, y) on the VGA monitor

with white color and transparent background.

3.3.6 alt up char buffer string

Prototype: int alt_up_char_buffer_string(alt_up_char_buffer_dev

*char_buffer, const char *ptr, unsigned int x,
unsigned int y)

Include: <altera_up_avalon_character_buffer.h>
Parameters: ch – the character to draw

x – the x coordinate
y – the y coordinate

Returns: 0 for success, -1 for error (such as out of bounds)
Description: Draw a NULL-terminated text string at the location specified by (x, y) .

3.3.7 alt up char buffer clear

Prototype: int alt_up_char_buffer_clear(alt_up_char_buffer_dev

*char_buffer)
Include: <altera_up_avalon_character_buffer.h>
Parameters: –
Returns: 0 for success
Description: Clears the character buffer’s memory.

4 Pixel Buffer

The Pixel Buffer sends pixel color values from a memory buffer to the VGA Controller, via an Avalon Streaming
Interface. The starting address of the memory buffer is user selectable. Using the default settings, pixel values
consist of 16 bits, and the memory buffer is accesssed using half-word operations. The pixel buffer converts the 16-
bit pixels to the 30-bit pixels required by the VGA Controller, and scales the resolution where appropriate. The pixel
buffer canbe configured to provide different resolutions. Using the default settings, the resolution is 320×240 pixels
for the VGA DAC and LCD daughter card (TRDB_LCM), and 400×240 for the touchscreen LCD (TrDB_LTM).

Altera Corporation - University Program
March 2009

5

http://university.altera.com/

VIDEO OUT IP CORES FOR ALTERA DE BOARDS For Quartus II 8

4.1 Address Format

When the pixel buffer is instantiated in an SOPC Builder system it is assigned a base address, as a memory mapped
device. Each pixel coordinate is then memory-mapped in this addressable space. Figure 3 shows an x,y coordinate
system for each pixel, with (0,0) being in the top-left corner of the screen. The address of each pixel is formaed by
adding an offset to the base address. The supported addressing modes are called consecutive mode and X-Y mode.

x

y

0 1 2 3 4

1

2

3

....

...
.

0 1 2 3 4
0

Figure 3. Video coordinate system

• Consecutive mode — the pixel addresses are consecutively laid out in the addressable space.

For example, for 320×240 resolution the pixel at screen coordinate (0, 0) is at the offset 0x0000, (0, 1) is at
offest 0x0001, ... (0, 319) is at offset 0x13F, (1, 0) is at offset 0x140, and so on.

• X-Y mode — the address contains x and y coordinates. The format of the address is shown in Figure 4a. The
values of m and n, shown in the figure, are related to the VGA Core’s resolution, as follows:

m = cei l (log2X)

n = cei l (log2Y)

where X and Y are the resolution in the X, Y directions, respectively.

For example, for 320×240 resolution we have

m = cei l (log2320) = 9

n = cei l (l og2240) = 8

For this resolution the address format is shown in Figure 4b.

4.2 Data Format

The data format of each pixel is user selectable. Using the default setting each pixel has the format shown in Figure 5,
in which red and blue have 5 bits and green has 6 bits. The other selectable data formats are greyscale, which uses 8
bits, 24-bit color which has 8 bits of red, blue, and green and 30-bit color which has 10 bits of red, blue, and green.

6 Altera Corporation - University Program
March 2009

http://university.altera.com/

VIDEO OUT IP CORES FOR ALTERA DE BOARDS For Quartus II 8

31 0
0X coordinate (m bits)Y coordinate (n bits)Not used

a) X-Y address format

31 0
0

19
X coordinate

1017
Y coordinate

18
Not used

b) X-Y address format for the 320×240 resolution

Figure 4. Address values for the X-Y mode

15 04

B

510

G

11

R

Figure 5. The Pixel Buffer’s data format for the 16-bit color mode.

4.3 Instantiating the Core in SOPC Builder

Designers use the Pixel Buffer’s configuration wizard in the SOPC Builder to specify the desired features. The
following list describes the available options in the configuration wizard.

• DE Board — Used to specify appropriate Altera DE board.

• Video Out Device — Choose the device being used, and by extension the screen resolution.

• Default Buffer Start Address (hex) — The start address of the buffer upon reset.

• Default Back Buffer Start Address (hex) — The start address of the back buffer upon reset. Can be equal to
the Default Buffer Start Address (hex), if no back buffer is desired.

• Addressing Mode — Choose between the Consecutive address mode and the X-Y mode.

• Width Scaling Factor — Used to help determined to buffer’s resolution.

• Height Scaling Factor — Used to help determined to buffer’s resolution.

• Color Space — Choose how many bits are used for pixel color.

4.4 Software Programming Model

4.4.1 Register Map

Device drivers control and communicate with the Pixel Buffer the Avalon memory mapped interfaces, named
avalon_control_slave. The avalon_control_slave provides an interface for controlling the pixel buffer’s operation,
and for obtaining status information. It consists of four registers, as shown in Table 4.

Altera Corporation - University Program
March 2009

7

http://university.altera.com/

VIDEO OUT IP CORES FOR ALTERA DE BOARDS For Quartus II 8

Table 4. Pixel Buffer register map
Offset Register R/W Bit Description

in bytes Name 31. . . 24 23. . . 16 15. . . 8 7. . . 4 3 2 1 0
0 Buffer R Memory buffer start address
4 BackBuffer R/W Memory buffer back address
8 Resolution R Y X
12 Status R m n (1) B (1) A S

Notes on Table 4:

(1) Reserved. Read values are undefined. Write zero.

As part of the settings assigned to the pixel buffer, the avalon_control_slave is given a base address when instantiated
in the SOPC Builder tool. Each of the registers in Table 4 is then addressed using an offset from this base. The Buffer
register, which has the offset 0, holds the 32-bit address of the start of the memory buffer. This register is read-only,
and shows the buffer address specified in the configuration wizard, as discussed in Section 4.1. The BackBuffer
register allows the start address of the memory buffer to be changed under program control. To change the memory
buffer address, the desired new address is first written into the R/W BackBuffer register. Then, a second write
operation is performed using the address of the read-only Buffer register. The value of the data provided in this
second write operation is not used by the pixel buffer instead, it interprets a write to the Buffer register as a request to
swap the contents of the Buffer and BackBuffer registers. The swap does not occur immediately. Instead, the swap is
done after the Pixel Buffer reaches the last pixel value associated with the screen currently being drawn by the VGA
controller. While this screen is not yet finished, the bit S of the status register is set to 1. After the current screen is
finished, the swap is performed and bit S is set to 0.

The Resolution register in Table 4 provides the X resolution of the screen in bits 15-0, and the Y resolution in bits
31-16. Finally, the status register provides information for the Pixel Buffer. The fields available in this register are
shown in Table 5.

Table 5. Status register bits
Bit number Bit name R/W Description

31 - 24 m R Width of Y coordinate
23 - 16 n R Width of X coordinate
7 - 4 B R number of bytes of color: 1 (greyscale),

2 (16-bit color), 3 (24-bit color) or
4 (30-bit color)

1 A R Address mode: 0 (X,Y), or 1 (consecutive)
0 S R Swap: 0 when swap is done, else 1

4.4.2 Programming with the Pixel Buffer

The Pixel Buffer is packaged with C-language functions accessible through the hardware abstraction layer (HAL).
These functions implement the basic operations that are needed for the Pixel Buffer. An example of C code that
these functions is given at the end of this section.

To use the functions, the C code must include the statement:

8 Altera Corporation - University Program
March 2009

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://university.altera.com/

VIDEO OUT IP CORES FOR ALTERA DE BOARDS For Quartus II 8

#include "altera_up_avalon_pixel_buffer.h"

4.4.3 alt up pixel buffer open dev

Prototype: alt_up_pixel_buffer_dev* alt_up_pixel_buffer_open_dev(const
char *name)

Include: <altera_up_avalon_pixel_buffer.h>
Parameters: name – the pixel buffer component name in SOPC Builder.
Returns: The corresponding device structure, or NULL if the device is not found
Description: Opens the pixel buffer device specified by name .

4.4.4 alt up pixel buffer draw

Prototype: int alt_up_pixel_buffer_draw(alt_up_pixel_buffer_dev

*pixel_buffer, unsigned int color, unsigned int
x, unsigned int y)

Include: <altera_up_avalon_pixel_buffer.h>
Parameters: pixel_buffer – the pointer to the VGA structure

color – the RGB color to be drawn
x – the x coordinate
y – the y coordinate

Returns: 0 for success, -1 for error (such as out of bounds)
Description: Draw a pixel at the location specified by (x, y) on the VGA monitor.

4.4.5 alt up pixel buffer change back buffer address

Prototype: int alt_up_pixel_buffer_change_back_buffer_address(alt_up_pixel_buffer_dev

*pixel_buffer, unsigned int new_address)
Include: <altera_up_avalon_pixel_buffer.h>
Parameters: pixel_buffer – the pointer to the VGA structure

new_address – the new start address of the back buffer
Returns: 0 for success
Description: Changes the back buffer’s start address.

4.4.6 alt up pixel buffer swap buffers

Prototype: int alt_up_pixel_buffer_swap_buffers(alt_up_pixel_buffer_dev

*pixel_buffer)
Include: <altera_up_avalon_pixel_buffer.h>
Parameters: pixel_buffer – the pointer to the VGA structure
Returns: 0 for success
Description: Swaps which buffer is being sent to the VGA Controller.

Altera Corporation - University Program
March 2009

9

http://university.altera.com/

VIDEO OUT IP CORES FOR ALTERA DE BOARDS For Quartus II 8

4.4.7 alt up pixel buffer check swap buffers status

Prototype: int alt_up_pixel_buffer_check_swap_buffers_status(alt_up_pixel_buffer_dev

*pixel_buffer)
Include: <altera_up_avalon_pixel_buffer.h>
Parameters: pixel_buffer – the pointer to the VGA structure
Returns: 0 if complete, 1 if still processing
Description: Check if swapping buffers has completed.

4.4.8 alt up pixel buffer clear screen

Prototype: void alt_up_pixel_buffer_clear_screen(alt_up_pixel_buffer_dev

*pixel_buffer, int backbuffer)
Include: <altera_up_avalon_pixel_buffer.h>
Parameters: pixel_buffer – the pointer to the VGA structure

backbuffer – set to 1 to clear the back buffer, otherwise set to 0 to
clear the current screen.

Returns: 0 if complete, 1 if still processing
Description: This function clears the screen or the back buffer.

4.4.9 alt up pixel buffer draw box

Prototype: void alt_up_pixel_buffer_draw_box(alt_up_pixel_buffer_dev

*pixel_buffer, int x0, int y0, int x1, int y1,
int color, int backbuffer)

Include: <altera_up_avalon_pixel_buffer.h>
Parameters: pixel_buffer – the pointer to the VGA structure

x0, x1, y0, y1 – coordinates of the top left (x0,y0) and bottom right
(x1,y1) corner of the box
color – color of the box to be drawn
backbuffer – set to 1 to select the back buffer, otherwise set to 0 to
select the current screen.

Returns: 0 if complete, 1 if still processing
Description: This function draws a box of a given color between points (x0,y0) and

(x1,y1).

10 Altera Corporation - University Program
March 2009

http://university.altera.com/

VIDEO OUT IP CORES FOR ALTERA DE BOARDS For Quartus II 8

4.4.10 alt up pixel buffer draw hline

Prototype: void alt_up_pixel_buffer_draw_hline(alt_up_pixel_buffer_dev

*pixel_buffer, int x0, int x1, int y, int
color, int backbuffer)

Include: <altera_up_avalon_pixel_buffer.h>
Parameters: pixel_buffer – the pointer to the VGA structure

x0, x1, y – coordinates of the left (x0,y) and the right (x1,y) end-points
of the line
color – color of the line to be drawn
backbuffer – set to 1 to select the back buffer, otherwise set to 0 to
select the current screen.

Returns: 0 if complete, 1 if still processing
Description: This function draws a horizontal line of a given color between points

(x0,y) and (x1,y).

4.4.11 alt up pixel buffer draw vline

Prototype: void alt_up_pixel_buffer_draw_vline(alt_up_pixel_buffer_dev

*pixel_buffer, int x, int y0, int y1, int
color, int backbuffer)

Include: <altera_up_avalon_pixel_buffer.h>
Parameters: pixel_buffer – the pointer to the VGA structure

x, y0, y1 – coordinates of the top (x,y0) and the bottom (x,y1) end-
points of the line
color – color of the line to be drawn
backbuffer – set to 1 to select the back buffer, otherwise set to 0 to
select the current screen.

Returns: 0 if complete, 1 if still processing
Description: This function draws a vertical line of a given color between points (x,y0)

and (x,y1).

Altera Corporation - University Program
March 2009

11

http://university.altera.com/

VIDEO OUT IP CORES FOR ALTERA DE BOARDS For Quartus II 8

4.4.12 alt up pixel buffer draw rectangle

Prototype: void alt_up_pixel_buffer_draw_rectangle(alt_up_pixel_buffer_dev

*pixel_buffer, int x0, int y0, int x1, int y1,
int color, int backbuffer)

Include: <altera_up_avalon_pixel_buffer.h>
Parameters: pixel_buffer – the pointer to the VGA structure

x0, x1, y0, y1 – coordinates of the top left (x0,y0) and bottom right
(x1,y1) corner of the rectangle
color – color of the rectangle to be drawn
backbuffer – set to 1 to select the back buffer, otherwise set to 0 to
select the current screen.

Returns: 0 if complete, 1 if still processing
Description: This function draws a rectangle of a given color between points (x0,y0)

and (x1,y1).

4.4.13 alt up pixel buffer draw line

Prototype: void alt_up_pixel_buffer_draw_line(alt_up_pixel_buffer_dev

*pixel_buffer, int x0, int y0, int x1, int y1,
int color, int backbuffer)

Include: <altera_up_avalon_pixel_buffer.h>
Parameters: pixel_buffer – the pointer to the VGA structure

x0, x1, y0, y1 – coordinates (x0,y0) and (x1,y1) correspond to end
points of the line
color – color of the line to be drawn
backbuffer – set to 1 to select the back buffer, otherwise set to 0 to
select the current screen.

Returns: 0 if complete, 1 if still processing
Description: This function draws a line of a given color between points (x0,y0) and

(x1,y1).

4.4.14 Pixel Buffer core C Example using Device Drivers

The example code is in Figure 6.

12 Altera Corporation - University Program
March 2009

http://university.altera.com/

VIDEO OUT IP CORES FOR ALTERA DE BOARDS For Quartus II 8

#include "altera_up_avalon_pixel_buffer.h"

int main(void)
{

alt_up_pixel_buffer_dev * pixel_buf_dev;

// open the Pixel Buffer port
pixel_buf_dev = alt_up_pixel_buffer_open_dev ("/dev/Pixel_Buffer");
if (pixel_buf_dev == NULL)

alt_printf ("Error: could not open pixel buffer device \n");
else

alt_printf ("Opened pixel buffer device \n");

/* Clear and draw a blue box on the screen */
alt_up_pixel_buffer_clear_screen (pixel_buf_dev);
alt_up_pixel_buffer_draw_box (pixel_buf_dev, 0, 0, 319, 239, 0x001F, 0);

}

Figure 6. An example of C with Device Driver Support code that uses Pixel Buffer Core.

5 Alpha Blending

The Alpha Blending core must be used if both the Pixel and Character Buffers are being used in the same system.
The Alpha Blending core combines the two video streams using the following formula: C n = α∗C f + (1−α)C b,
where Cn is the outgoing pixel color, α is a number between 0 and 1, Cf in the incoming foreground pixel color, Cb
is the incoming background pixel color. Currently, the core only supports 0 and 1 values for α. The Alpha Blending
Core has two alavon streaming sinks, foreground and background, and one alavon streaming source, the blended
pixels. The α value is transmitted with the foreground stream as a 10-bit number per pixel. When the 10-bit number
equal to 0, it is equivalent to α= 0. When the 10-bit number equal to 0x3FF, or 1023 (in decimal), it is equivalent to
α= 1.

5.1 Instantiating the Core in SOPC Builder

The Alpha Blending core has no parameter and therefore no configuration wizard.

6 Video Out Streaming Interface Format

This section describes the video out cores’ streaming interface format, which a user defined video out core must
conform to, so that it may be used together with the above Altera University Program cores. This section assumes
the user is familiar with the VGA video format, Avalon Streaming Interfaces and how to create their own SOPC
Builder components.

The video out cores have a standard streaming interface format. Each streaming interface packet is one video frame.
The startofpacket signal is set on the first pixel (upper left pixel) in the frame and the endofpacket signal is set on

Altera Corporation - University Program
March 2009

13

http://www.altera.com/literature/fs/fs_avalon_streaming.pdf
http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
http://university.altera.com/

VIDEO OUT IP CORES FOR ALTERA DE BOARDS For Quartus II 8

the last pixel (lower right pixel) in the frame. Each pixel is in 30-bit RGB format, or in 40-bit RGBA format (if
attaching to the Alpha Blending foreground stream). Once a core is created that conform to this format, it can be
made to be an SOPC Builder component and used in systems with the other video out cores.

■

14 Altera Corporation - University Program
March 2009

http://university.altera.com/

	1 Overview
	2 VGA Controller
	2.1 Instantiating the Core in SOPC Builder

	3 Character Buffer
	3.1 Address Format
	3.2 Instantiating the Core in SOPC Builder
	3.3 Software Programming Model
	3.3.1 Register Map
	3.3.2 Programming with the Character Buffer
	3.3.3 alt_up_char_buffer_init
	3.3.4 alt_up_char_buffer_open_dev
	3.3.5 alt_up_char_buffer_draw
	3.3.6 alt_up_char_buffer_string
	3.3.7 alt_up_char_buffer_clear

	4 Pixel Buffer
	4.1 Address Format
	4.2 Data Format
	4.3 Instantiating the Core in SOPC Builder
	4.4 Software Programming Model
	4.4.1 Register Map
	4.4.2 Programming with the Pixel Buffer
	4.4.3 alt_up_pixel_buffer_open_dev
	4.4.4 alt_up_pixel_buffer_draw
	4.4.5 alt_up_pixel_buffer_change_back_buffer_address
	4.4.6 alt_up_pixel_buffer_swap_buffers
	4.4.7 alt_up_pixel_buffer_check_swap_buffers_status
	4.4.8 alt_up_pixel_buffer_clear_screen
	4.4.9 alt_up_pixel_buffer_draw_box
	4.4.10 alt_up_pixel_buffer_draw_hline
	4.4.11 alt_up_pixel_buffer_draw_vline
	4.4.12 alt_up_pixel_buffer_draw_rectangle
	4.4.13 alt_up_pixel_buffer_draw_line
	4.4.14 Pixel Buffer core C Example using Device Drivers

	5 Alpha Blending
	5.1 Instantiating the Core in SOPC Builder

	6 Video Out Streaming Interface Format

