Nios’I]

Nios Il Hardware Development

101 Innovation Drive
San Jose, CA 95134
www.altera.com

TU-N2HWDV-3.0

Document Version:
Document Date:

Tutorial

3.0
December 2009

http://www.altera.com

Copyright © 2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

L5. EN IS0 5001

fAil |:| 'E D)/A) Contents

Chapter 1. Nios Il Hardware Development

Introduction 1-1
Design Example 1-1
Software and Hardware Requirements 1-2
OpenCore Plus Evaluation 1-3

Nios II System Development Flow i 1-3
Analyzing System Requirements 1-4
Defining and Generating the System in SOPC Builder.................... 1-5
Integrating the SOPC Builder System into the Quartus Il Project............................. 1-6
Developing Software with the Nios II Software Build Tools for Eclipse 1-6
Running and Debugging Software on the Target Board 1-7
Varying the Development Flow i 1-7

Creating the Design Example 1-8
Install the Design Files 1-8
Analyze System Requirements 1-9
Start the Quartus II Software and Open the Example Project 1-9
Create a New SOPC Builder System, 1-10
Define the System in SOPC Builder 1-11
Integrate the SOPC Builder System into the Quartus Il Project 1-21
Download Hardware Design to Target FPGA 1-27
Develop Software Using the Nios II Software Build Tools for Eclipse 1-28
Run the Program on Target Hardware o i i 1-31

Taking the Next Step oo 1-31

Additional Information

Revision History Info-1

How to Contact Altera e e Info-1

Typographic Conventions i i Info-1

© December 2009 Altera Corporation Nios Il Hardware Development Tutorial

iv Contents

Nios Il Hardware Development Tutorial © December 2009 Altera Corporation

1. Nios Il Hardware Development
/ANO[S YA ’

Introduction

Design Example

This tutorial introduces you to the system development flow for the Nios® II
processor. Using the Quartus® II software and the Nios II Embedded Design Suite
(EDS), you build a Nios I hardware system design and create a software program
that runs on the Nios II system and interfaces with components on Altera®
development boards. The tutorial is a good starting point if you are new to the Nios II
processor or the general concept of building embedded systems in FPGAs.

Building embedded systems in FPGAs involves system requirements analysis,
hardware design tasks, and software design tasks. This tutorial guides you through
the basics of each topic, with special focus on the hardware design steps. Where
appropriate, the tutorial refers you to further documentation for greater detail.

If you are interested only in software development for the Nios II processor, refer to
the tutorial in the Getting Started with the Graphical User Interface chapter of the Nios II
Software Developer’s Handbook.

When you complete this tutorial, you will understand the Nios II system
development flow, and you will be able to create your own custom Nios II system.

The design example you build in this tutorial demonstrates a small Nios II system for
control applications, that displays character I/O output and blinks LEDs in a binary
counting pattern. This Nios II system can also communicate with a host computer,
allowing the host computer to control logic inside the FPGA.

The example Nios II system contains the following components:
Nios II/s processor core

On-chip memory

Timer

JTAG UART

8-bit parallel I/O (PIO) pins to control the LEDs

System identification component

Figure 1-1 is a block diagram showing the relationship between the host computer,
the target board, the FPGA, and the Nios II system.

© December 2009 Altera Corporation Nios Il Hardware Development Tutorial

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

Introduction

Figure 1-1. Tutorial Design Example

Target Board

Altera FPGA vee
Nios Il System
Debug
5 control | Nios 11/s Instr © 8
S core |Data] 5 PIO
‘E —
3 [5
Q c
E JTAG § System
Character | YART @ ID
10 =
§
— ; = On-chip
Timer (% RAM
Other logic

Clock
oscillator

As shown in Figure 1-1, other logic can exist within the FPGA alongside the Nios II
system. In fact, most FPGA designs with a Nios II system also include other logic. A
Nios II system can interact with other on-chip logic, depending on the needs of the
overall system. For the sake of simplicity, the design example in this tutorial does not
include other logic in the FPGA.

Software and Hardware Requirements
This tutorial requires you to have the following software:

m Altera Quartus II software version 9.1 or later—The software must be installed on
a Windows or Linux computer that meets the Quartus II minimum requirements.

.o For system requirements and installation instructions, refer to Altera
Software Installation and Licensing.
m Nios II EDS version 9.1 or later.

m Design files for the design example—A hyperlink to the design files appears next
to this document on the Literature: Nios II Processor page of the Altera website.

You can build the design example in this tutorial with any Altera development board
or your own custom board that meets the following requirements:

Nios Il Hardware Development Tutorial © December 2009 Altera Corporation

http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

Nios Il System Development Flow

m The board must have an Altera Stratix® series, Cyclone® series, or Arria® series
FPGA.

m The FPGA must contain a minimum of 2500 logic elements (LE) or adaptive look-
up tables (alut).

m The FPGA must contain a minimum of 50 M4K or M9K memory.

B An oscillator must drive a constant clock frequency to an FPGA pin. The
maximum frequency limit depends on the speed grade of the FPGA. Frequencies
of 50 MHz or less should work for most boards; higher frequencies might work.

m FPGA I/O pins can optionally connect to eight or fewer LEDs to provide a visual
indicator of processor activity.

m The board must have a JTAG connection to the FPGA that provides a
programming interface and communication link to the Nios II system. This
connection can be either a dedicated 10-pin JTAG header for an Altera USB-Blaster
download cable (revision B or higher) or a USB connection with USB-Blaster
circuitry embedded on the board.

= To complete this tutorial, you must refer to the documentation for your board that
describes clock frequencies and pinouts. For Altera development boards, you can find
this information in the associated reference manual.

«o For information about Altera development kits and development boards, refer to the
Literature: Development Kits page of the Altera website.

OpenCore Plus Evaluation

You can perform this tutorial on hardware without a license. With Altera's free
OpenCore Plus evaluation feature, you can perform the following actions:

m Simulate the behavior of a Nios II processor within your system
m Verify the functionality of your design
m Evaluate the size and speed of your design quickly and easily

m Generate time-limited device programming files for designs that include Nios II
processors

m Program a device and verify your design in hardware

You need to purchase a license for the Nios II processor only when you are completely
satisfied with its functionality and performance, and want to use your design in
production.

«® For more information about OpenCore Plus, refer to the AN320: OpenCore Plus
Evaluation of Megafunctions.

Nios Il System Development Flow

This section discusses the complete design flow for creating a Nios II system and
prototyping it on a target board. Figure 1-2 shows the Nios II system development
flow.

© December 2009 Altera Corporation Nios Il Hardware Development Tutorial

http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/lit-devkits.jsp

1-4

Nios Il System Development Flow

Figure 1-2.

Nios Il System Development Flow

Analyze system
requirements
T
Mee—
Ty v Custom
. instruction
Nios I) and
cores > Define and generate < custom
and system in SOPC Builder peripheral
standard logic
peripherals
N~ —
Meer__]
Altera
U hardware
- o abstraction
Custom Integrate SOPC Builder system Rﬁ‘ée,'\?ig Ssﬂﬁé"’oé}tr\?v;'\;gh - I?r/]%r
Tﬁgcévdfgse into Quartus Il project Build Tools for Eclipse peripheral
drivers
N~
v v N
?ﬁ'ﬁ’ngndﬁgﬁggﬁz > Download software executable User C/C++
g req : to Nios Il system on target board application
and other design constraints cpo%e o
custom
libraries
\ 4 4 —

Compile hardware design

Run and debug software
for target board

on target board

\ 4

Download FPGA design
to target board

\ 4

Refine software
and hardware

The Nios II development flow consists of three types of development: hardware
design steps, software design steps, and system design steps, involving both
hardware and software. For simpler Nios II systems, one person might perform all
steps. For more complex systems, separate hardware and software designers might be
responsible for different steps. System design steps involve both the hardware and
software, and might require input from both sides. In the case of separate hardware
and software teams, it is important to know exactly what files and information must
be passed between teams at the points of intersection in the design flow.

The design steps in this tutorial focus on hardware development, and provide only a
simple introduction to software development.

After completing this tutorial, refer to the Nios II Software Developer’s Handbook,
especially the tutorial in the Getting Started with the Graphical User Interface chapter, for
further details about the software development process. The handbook is a complete
reference for developing software for the Nios II processor.

Analyzing System Requirements

Nios Il Hardware Development Tutorial

The development flow begins with predesign activity which includes an analysis of
the application requirements, such as the following questions:

m What computational performance does the application require?

m How much bandwidth or throughput does the application require?

© December 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

Nios Il System Development Flow

m What types of interfaces does the application require?
m Does the application require multithreaded software?

Based on the answers to these questions, you can determine the concrete system
requirements, such as:

m Which Nios II processor core to use: smaller or faster.
m What components the design requires and how many of each kind.
m Which real-time operating system (RTOS) to use, if any.

m Where hardware acceleration logic can dramatically improve system performance.
For example:

m Could adding a DMA component eliminate wasted processor cycles copying
data?

m Could a custom instruction replace the critical loop of a DSP algorithm?

Analyzing these topics involve both the hardware and software teams.

Defining and Generating the System in SOPC Builder

After analyzing the system hardware requirements, you use SOPC Builder to specify
the Nios II processor core(s), memory, and other components your system requires.
SOPC Builder automatically generates the interconnect logic to integrate the
components in the hardware system.

You can select from a list of standard processor cores and components provided with
the Nios II EDS. You can also add your own custom hardware to accelerate system
performance. You can add custom instruction logic to the Nios II core which
accelerates CPU performance, or you can add a custom component which offloads
tasks from the CPU. This tutorial covers adding standard processor and component
cores, and does not cover adding custom logic to the system.

The primary outputs of SOPC Builder are the following file types:

m SOPC Builder Design File (.sopc)—Contains the hardware contents of the SOPC
Builder system.

m SOPC Information File (.sopcinfo)—Contains a human-readable description of the
contents of the .sopc file. The Nios II EDS uses the .sopcinfo file to compile
software for the target hardware.

m Hardware description language (HDL) files—Are the hardware design files that
describe the SOPC Builder system. The Quartus II software uses the HDL files to
compile the overall FPGA design into an SRAM Object File (.sof).

-o For further details about the Nios II processor cores, refer to the Nios II Processor

Reference Handbook. For further details about SOPC Builder and developing custom
components, refer to Volume 4: SOPC Builder of the Quartus II Handbook. For further
details about custom instructions, refer to the Nios II Custom Instruction User Guide.

© December 2009 Altera Corporation Nios Il Hardware Development Tutorial

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf
http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf

Nios Il System Development Flow

Integrating the SOPC Builder System into the Quartus Il Project

After generating the Nios II system using SOPC Builder, you integrate it into the
Quartus II project. Using the Quartus II software, you perform all tasks required to
create the final FPGA hardware design.

As shown in Figure 1-1 on page 1-2, most FPGA designs include logic outside the
Nios II system. You can integrate your own custom hardware modules into the FPGA
design, or you can integrate other ready-made intellectual property (IP) design
modules available from Altera or third party IP providers. This tutorial does not cover
adding other logic outside the Nios II system.

Using the Quartus II software, you also assign pin locations for I/O signals, specify
timing requirements, and apply other design constraints. Finally, you compile the
Quartus II project to produce a .sof to configure the FPGA.

You download the .sof to the FPGA on the target board using an Altera download
cable, such as the USB-Blaster™. After configuration, the FPGA behaves as specified
by the hardware design, which in this case is a Nios II processor system.

For further information about using the Quartus II software, refer to Introduction to the
Quartus 11 Software, the Quartus Il Handbook, and the Quartus II Software Interactive
Tutorial in the Training Courses section of the Altera website.

Developing Software with the Nios Il Software Build Tools for Eclipse

Using the Nios II Software Build Tools for Eclipse, you perform all software
development tasks for your Nios II processor system. After you generate the system
with SOPC Builder, you can begin designing your C/C++ application code
immediately with the Nios II Software Build Tools for Eclipse. Altera provides
component drivers and a hardware abstraction layer (HAL) which allows you to write
Nios II programs quickly and independently of the low-level hardware details. In
addition to your application code, you can design and reuse custom libraries in your
Nios II Software Build Tools for Eclipse projects.

To create a new Nios II C/C++ application project, the Nios I Software Build Tools for
Eclipse uses information from the .sopcinfo file. You also need the .sof file to
configure the FPGA before running and debugging the application project on target
hardware.

The Nios II Software Build Tools for Eclipse can produce several outputs, listed below.
Not all projects require all of these outputs.

m system.h file—Defines symbols for referencing the hardware in the system. The
Nios II Software Build Tools for Eclipse automatically create this file when you
create a new project.

m Executable and Linking Format File (.elf)—lIs the result of compiling a C/C++
application project, that you can download directly to the Nios II processor.

m Hexadecimal (Intel-Format) File (.hex)—Contains initialization information for
on-chip memories. The Nios II Software Build Tools for Eclipse generate these
initialization files for on-chip memories that support initialization of contents.

Nios Il Hardware Development Tutorial © December 2009 Altera Corporation

http://www.altera.com/education/edu-index.html
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf

Nios Il System Development Flow

m Flash memory programming data—Is boot code and other arbitrary data you
might write to flash memory. The Nios II Software Build Tools for Eclipse includes
a flash programmer, which allows you to write your program to flash memory.
The flash programmer adds appropriate boot code to allow your program to boot
from flash memory. You can also use the flash programmer to write arbitrary data
to flash memory.

This tutorial focuses on downloading only the .elf directly to the Nios II system.
“.e For complete details about developing software for the Nios II processor, refer to the
Nios II Software Developer’s Handbook.

Running and Debugging Software on the Target Board

The Nios II Software Build Tools for Eclipse provides complete facilities for
downloading software to a target board, and running or debugging the program on
hardware. The Nios II Software Build Tools for Eclipse debugger allows you to start
and stop the processor, step through code, set breakpoints, and analyze variables as
the program executes.

<o For details about running and debugging Nios II programs, refer to the tutorial in the
Getting Started with the Graphical User Interface chapter of the Nios II Software
Developer’s Handbook.

Varying the Development Flow

The development flow is not strictly linear. This section describes common variations.

Refining the Software and Hardware

After running software on the target board, you might discover that the Nios II
system requires higher performance. In this case, you can return to software design
steps to make improvements to the software algorithm. Alternatively, you can return
to hardware design steps to add acceleration logic. If the system performs multiple
mutually exclusive tasks, you might even decide to use two (or more) Nios II
processors that divide the workload and improve the performance of each individual
processor.

Iteratively Creating a Nios Il System

A common technique for building a complex Nios II system is to start with a simpler
SOPC Builder system, and iteratively add to it. At each iteration, you can verify that
the system performs as expected. You might choose to verify the fundamental
components of a system, such as the processor, memory, and communication
channels, before adding more complex components. When developing a custom
component or a custom instruction, first integrate the custom logic into a minimal
system to verify that it works as expected; later you can integrate the custom logic into
a more complex system.

© December 2009 Altera Corporation Nios Il Hardware Development Tutorial

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

Creating the Design Example

“ ™. e Altera provides several working Nios II reference designs which you can use as a

starting point for your own designs. After installing the Nios II EDS, refer to the
<Nios II EDS install path>/examples/verilog or the <Nios II EDS install path>/
examples/vhdl directory. Demonstration applications are also available in newer
development kit installations.

Verifying the System with Hardware Simulation Tools

You can perform hardware simulation of software executing on the Nios II system,
using tools such as the ModelSim® RTL simulator. Hardware simulation is useful to
meet certain needs, including the following cases:

m To verify the cycle-accurate performance of a Nios II system before target
hardware is available.

m To verify the functionality of a custom component or a Nios II custom instruction
before trying it on hardware.

A hardware simulation step is not shown in Figure 1-2 on page 1-4. If you are
building a Nios II system based on the standard components provided with the
Nios II EDS, the easiest way to verify functionality is to download the hardware and
software directly to a development board.

“®.e For details about performing hardware simulation for Nios II system, refer to the

AN351: Simulating Nios 1I Embedded Processor Designs.

Creating the Design Example

This section guides you through the Nios II development flow to create a working
design example. You perform the following steps:

“Install the Design Files” on page 1-8.

“Analyze System Requirements” on page 1-9.

“Start the Quartus II Software and Open the Example Project” on page 1-9.
“Create a New SOPC Builder System” on page 1-10.

“Define the System in SOPC Builder” on page 1-11.

“Integrate the SOPC Builder System into the Quartus II Project” on page 1-21.
“Download Hardware Design to Target FPGA” on page 1-27.

® N o @ bk » M=

“Develop Software Using the Nios II Software Build Tools for Eclipse” on
page 1-28.

9. “Run the Program on Target Hardware” on page 1-31.

Install the Design Files

Before you proceed, you must install the Quartus II software and the Nios II EDS. You
must also download tutorial design files from the Altera web site. The design files
provide a ready-made Quartus II project to use as a starting point.

«o The design files appear next to this document on the Literature: Nios II Processor
page of the Altera website.

Nios Il Hardware Development Tutorial © December 2009 Altera Corporation

http://www.altera.com/literature/an/an351.pdf
http://www.altera.com/literature/lit-nio2.jsp

Creating the Design Example

Perform the following steps to set up the design environment:
1. Locate the zipped design files on the Altera web site.

2. Unzip the contents of the zip file to a directory on your computer. Do not use
spaces in the directory path name.

The remainder of this tutorial refers to this directory as the <design files directory>.

Analyze System Requirements

This section describes the system requirements for the tutorial design example. The
design example has the following goals:

m Demonstrate a simple Nios II processor system that you can use for control
applications.

m Build a practical, real-world system, while providing an educational experience.

m Demonstrate the most common and effective techniques to build practical, custom
Nios II systems.

m Build a Nios II system that works on any board with an Altera FPGA. The entire
system must use only on-chip resources, and not rely on the target board.

m The design should conserve on-chip logic and memory resources so it can fit in a
wide range of target FPGAs.

These goals lead to the following design decisions:
m The Nios II system uses only the following inputs and outputs:
m One clock input, which can be any constant frequency.
m Eight optional outputs to control LEDs on the target board.
m The design uses the following components:
m Nios II/s core with 2 KB of instruction cache
m 20 KB of on-chip memory
m Timer
s JTAG UART
m Eight output-only parallel I/O (PIO) pins

m System ID component

“®.e For complete details about these and other components, refer to Volume 5: Embedded

Peripherals of the Quartus 11 Handbook.

Start the Quartus Il Software and Open the Example Project

To start, you open the Quartus II project for the tutorial design example. This
Quartus II project serves as an easy starting point for the Nios II development flow.
The Quartus II project contains all settings and design files required to create the .sof.

To open the Quartus II project, perform the following steps:

© December 2009 Altera Corporation Nios Il Hardware Development Tutorial

http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf

1-10
Creating the Design Example

1. Start the Quartus II software.

On Windows computers, click Start, point to Programs, Altera, Quartus II
<version>, and then click Quartus II <version>. On Linux computers, type

quart us at a shell command prompt, assuming the Quartus II program directory
is in the search path.

On the File menu, click Open Project. The Open Project dialog box appears.
Browse to the <design files directory>.

Select the file nios2_quartus2_project.qpf and click Open.

S

If the Quartus II software does not automatically display the Block Diagram File
(.bdf) nios2_quartus2_project.bdf (Figure 1-3), perform the following steps:

a. On the File menu, click Open. The Open dialog box appears.
b. Browse to the <design files directory>.
c. Select nios2_quartus2_project.bdf and click Open.

Figure 1-3 shows the nios2_quartus2_project.bdf file.

Figure 1-3. Design Example Block Diagram File

T Quartus I1 - C:/HW_Tutorial/niosII_hw_dev_tutorial 3C120/nios2_quartus2_project - nios2_quartus2. x|

Fle Edit View Project Processing Tools Window

Niosll Quartusll Project

Thiz iz the top level for the HA tutorial

wl; ¢ {PLO_CLOCKINBUTI] — L

W JUTEUT —— "LEOBE 0]

J !

The .bdf contains an input pin for the clock input and eight output pins to drive LEDs
on the board. Next, you create a new SOPC Builder system, which you ultimately
connect to these pins.

Create a New SOPC Builder System

You use SOPC Builder to generate the Nios II processor system, adding the desired
components, and configuring how they connect together. Perform the following steps
to create a new SOPC Builder system:

1. On the Tools menu in the Quartus II software, click SOPC Builder. SOPC Builder
starts and displays the Create New System dialog box.

2. Typefirst_ni 0s2_syst emas the System Name.

3. Select either Verilog or VHDL as the Target HDL. If you do not have a preference,
accept the default. Later when you generate the system, SOPC Builder outputs
design files in the language you select.

4. Click OK. SOPC Builder opens, displaying the System Contents tab.
Figure 1-4 shows the SOPC Builder GUI in its initial state.

Nios Il Hardware Development Tutorial © December 2009 Altera Corporation

1-11
Creating the Design Example

Figure 1-4. SOPC Builder GUI

= Altera SOPC Builder - first_nios2_system.sopc (C:\HW_Tutorial\niosII_hw_dev_tutorial_3C120\first_nio — o] x|
EFile Edit Module System Miew Tools Help

System Contents | System Generation |

Component Library Target
Project Device Family| Stratoc Il vI Name | Source | MHz s

L1 New componant clk_0 [External |50.0 |
Library
Avalon Verification Suite
: idges and Adapters
erface Protocols
gacy C use [ce. | Module Name Description clock | Base | End
mories and Memery Controller

o b4 1]

I]
new... || Eat. | cas. | | oo | en | = | a | v | = | _sessuep. | _emers. | Fiter:Derau
@ Info: No errors or warnings.
Exit Help 4 Prex Mext [Generate

Define the System in SOPC Builder

You use SOPC Builder to define the hardware characteristics of the Nios II system,
such as which Nios II core to use, and what components to include in the system.
SOPC Builder does not define software behavior, such as where in memory to store
instructions or where to send the st der r character stream.

In this section, you perform the following steps:

1. Specify target FPGA and clock settings.

2. Add the Nios II core, on-chip memory, and other components.
3. Specify base addresses and interrupt request (IRQ) priorities.
4. Generate the SOPC Builder system.

The SOPC Builder design process does not need to be linear. The design steps in this
tutorial are presented in the most straightforward order for a new user to understand.
However, you can perform SOPC Builder design steps in a different order.

Specify Target FPGA and Clock Settings

The Target and Clock Settings sections of the System Contents tab specify the SOPC

Builder system's relationship to other devices in the system. Perform the following
steps:

1. Select the Device Family that matches the Altera FPGA you are targeting.
"= If a warning appears stating the selected device family does not match the

Quartus project settings, ignore the warning. You specify the device in the
Quartus project settings later in this tutorial.

© December 2009 Altera Corporation Nios Il Hardware Development Tutorial

1-12

Creating the Design Example

2.

4.

In the documentation for your board, look up the clock frequency of the oscillator

that drives the FPGA.

“®.e For Altera development board reference manuals, refer to the Literature:
Development Kits page of the Altera website.

Double-click the clock frequency in the MHz column for cl k_0. cl k_0 is the
default clock input name for the SOPC Builder system. The frequency you specify
for ¢l k_0 must match the oscillator that drives the FPGA.

Type the clock frequency and press Enter.

Next, you begin to add hardware components to the SOPC Builder system. As you
add each component, you configure it appropriately to match the design
specifications.

Add the On-Chip Memory

Processor systems require at least one memory for data and instructions. This design
example uses one 20 KB on-chip memory for both data and instructions. To add the
memory, perform the following steps:

1.

In the list of available components (on the left side of the System Contents tab),
expand Memories and Memory Controllers, expand On-Chip, and then click On-
Chip Memory (RAM or ROM).

Click Add. The On-Chip Memory (RAM or ROM) MegaWizard interface appears.
Figure 1-5 shows the GUL

In the Block Type list, select Auto.

In the Total memory size box, type 20 and select KBytes to specify a memory size
of 20 KB.

Do not change any of the other default settings.

Nios Il Hardware Development Tutorial © December 2009 Altera Corporation

http://www.altera.com/literature/lit-devkits.jsp
http://www.altera.com/literature/lit-devkits.jsp

1-13
Creating the Design Example

Figure 1-5. On-Chip Memory MegaWizard

x|
R On-Chip Memory

Magolors’ (RAM or ROM) About | Documentation

General settings| » Memoary initidlization)

[Memory type
* RAM (Writable) ™ ROM (Read-only}

[™ Duakport access
Read During Write Mode: {007 care

Block type: |A”‘° -

[V Initialize memory content

Memory will be inttialized from onchip_memory2_0.hex

rSize
Data width: 32 -
Total memory size: lls— KBytes
™| Minimize memory block usage (may impact fmax)
rRead latency
Slave 51 lﬁ Slave 52: m

Next = |M

Cancel | < Back

6. Click Finish. You return to the SOPC Builder System Contents tab, and an
instance of the on-chip memory now appears in the table of available components.

e For further details about on-chip memory, you can click Documentation in the On-
Chip Memory (RAM or ROM) MegaWizard interface. This documentation feature is
available in the MegaWizard interface for each component.

7. Right-click the on-chip memory and click Rename.

8. Type onchi p_nmemand press Enter.

"=~ You must type these tutorial component names exactly as specified. Otherwise, the
tutorial programs written for this Nios II system fail in later steps. In general, it is a
good habit to give descriptive names to hardware components. Nios II programs use
these symbolic names to access the component hardware. Therefore, your choice of
component names can make Nios II programs easier to read and understand.

Add the Nios Il Processor Core

In this section you add the Nios II/s core and configure it to use 2 KB of on-chip
instruction cache memory. For educational purposes, the tutorial design example uses
the Nios II/s "standard" core, which provides a balanced trade-off between
performance and resource utilization. In reality, the Nios II/s core is more powerful
than necessary for most simple control applications.

Perform the following steps to add a Nios II/s core to the system:

© December 2009 Altera Corporation Nios Il Hardware Development Tutorial

1-14

Creating the Design Example

1. In the list of available components, expand Processors, and then click Nios II

Processor.

2. Click Add. The Nios II Processor MegaWizard interface appears, displaying the

Nios II Core page. Figure 1-6 shows the GUL

Under Select a Nios II core, select Nios I1/s.
In the Hardware Multiply list, select None.

Turn off Hardware Divide.

SRR LN

Offset box.

Under Reset Vector, select onchip_mem in the Memory list and type 0x0 in the

7. Under Exception Vector, select onchip_mem in the Memory list and type 0x20 in

the Offset box.

Figure 1-6. Nios Il MegaWizard — Nios Il Core Page

™ Nios II Processor - cpu_0

“ Nios II Processor
Megators

MMU and MPU St

Advanced Features

Caches and Memory Interfaces)

G Debug Module

£

Custom Instructions

~Core Nios Il

Select a Nios Il core:

ONios life @Nios Il/s ONios IIf

- RISC RISC RIEC
Nios Il 32-bit 32-bit 32-bit
Selector Guide Instruction Cache Instruction Cachs
Fanily: Cyclone I Branch Prediction Branch Prediction
Hardware Multiply Hardware Multply
feystem: 0.0 MHz Hardware Divide Hardware Divide
Barrel Shifter
coud. 0 Data Cache
Dynamic Branch Prediction
Performance at 50.0 1Hz Up to 8 DMPS Up to 32 DIIPS Up to 57 DMPS
Logic Usage 800-700 LEs 1200-1400 LEs 1400-1200 LEs
Memory Usage Two M3Ks (or equiv.) Two MSKs = cache Three M3Ks + cache

Hardware Multiply: pone ~| [~ Hardware Divide

Reset Vector: Memory: |n":nip7mem x| Offset |nxn 0x00000000
Exception Vector: Memory: ~| Offset: [0 0x00000020
I= | Include 11U

Only include the MMU when using an operating system that explicitly supports an MU

Fast TLB Wiss Exception Vector: Memory:] ortset o

I~ Include MPU

Cancel | = Back | Next> | Enish

8. Click Caches and Memory Interfaces. The Caches and Memory Interfaces page

appears. Figure 1-7 shows the GUL
9. In the Instruction Cache list, select 2 Kbytes.
10. Turn off Enable Bursts.

11. Turn off Include tightly coupled instruction master port(s).

Nios Il Hardware Development Tutorial

© December 2009 Altera Corporation

Creating the Design Example

1-15

Figure 1-7. Nios Il MegaWizard — Caches and Memory Interfaces page

™ Nios II Processor - cpu_0 il

“ Nios II Processor

™ AdvancedFeatres » MMUand MPUS

bug Modue

~Caches and Memory Interface

rInstruction Master Data Master
Data Cache: lm I~ Omit data master port
[~ Enable Bursts (Burst Size: 32 bytes) Help Data Cache Line Size lm
[™ Enable Burst= (Burst Size: 32 bytes) Help
I~ Inciude tightly coupled instruction master port(s). I ——
Numberof poris: [1 > Nurmber of parts: m
Cancel | <Back | Next> ﬂl

12. Do not change any settings on the Advanced Features, MMU and MPU Settings,
JTAG Debug Module, or Custom Instructions pages.

13. Click Finish. You return to the SOPC Builder System Contents tab, and an
instance of the Nios II core appears in the table of available components.
“.e For further details about configuring the Nios II core, refer to the Instantiating the
Nios II Processor in SOPC Builder chapter of the Nios II Processor Reference Handbook.

' =~ SOPC Builder automatically connects the instruction and data master ports on the
Nios II core to the memory slave port. Figure 1-8 shows the GUIL. When building a
system, always verify that SOPC Builder's automatic connections are appropriate for

your system requirements.

Figure 1-8. System Contents Tab with the Nios Il Core and On-Chip Memory

Target Clock Settings
Device Family:| Cyclone I - Hame | Source I MHz | Add
clk_0 |External s0.0 |
Remove
Use | Conne... Module Name Description Clock Baze End

e
&1

17 B cpu
instruction_master
data_master
jtag_debug_module

" On-Chip Memory (RAM or ROM)

‘Avalon Memory Mapped Slave clk_0 0x00000000 |0x000Q03££E
Nios Il Processor

‘Avalon Memory Mapped Master clk_0

‘Avalon Memory Mapped Master IRQ 0 IRQ 31

‘Avalon Memory Mapped Slave 0x00004800 |0x00004££F

© December 2009 Altera Corporation

Nios Il Hardware Development Tutorial

http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf

1-16
Creating the Design Example

“ . e For further details about connecting memory to Nios II systems, refer to the Building

Memory Subsystems Using SOPC Builder chapter in volume 4 of the Quartus II
Handbook.

Add the JTAG UART

The JTAG UART provides a convenient way to communicate character data with the
Nios II processor through the USB-Blaster download cable. Perform the following
steps to add the JTAG UART:

1. In the list of available components, expand Interface Protocols, expand Serial,
and then click JTAG UART.

2. Click Add. The JTAG UART MegaWizard interface appears. Figure 1-9 shows the
GUL

3. Do not change the default settings.

Figure 1-9. JTAG UART MegaWizard

™ JTAG UART - jtag uart 0 x|

“ JTAG UART

i| Documentation

Simulation >

Write FIFO (Data from Avalon to JTAG)

Buffer depth (bytes): |54 - IRQ threshold: 3

[~ Construct using registers instead of memory blocks

rRead FIFO (Data from JTAG to Avalon)

Buffer depth (bytes): |54 - IRQ threshold: [

[~ Construct using registers instead of memory blocks

Cancel | = Badk | Mext > | Finish

4. Click Finish. You return to the SOPC Builder System Contents tab, and an
instance of the JTAG UART now appears in the table of available components.

& SOPC Builder automatically connects the data master port on the Nios II core to the
JTAG UART slave port. (The instruction master port does not connect to the JTAG
UART, because the JTAG UART is not a memory device and cannot feed instructions
to the Nios II processor.) When building a system, always verify that SOPC Builder's
automatic connections are appropriate for your system requirements.

<o For further details about the JTAG UART, refer to the JTAG UART Core chapter in
volume 5 of the Quartus II Handbook.

Add the Interval Timer

Most control systems use a timer component to enable precise calculation of time. To
provide a periodic system clock tick, the Nios Il HAL requires a timer.

Nios Il Hardware Development Tutorial © December 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51009.pdf
http://www.altera.com/literature/hb/qts/qts_qii54006.pdf
http://www.altera.com/literature/hb/qts/qts_qii54006.pdf

Creating the Design Example

1-17

Perform the following steps to add the timer:

1.

In the list of available components, expand Peripherals, expand Microcontroller
Peripherals, and then click Interval Timer.

Click Add. The Interval Timer MegaWizard interface appears. Figure 1-10 shows
the GUL

In the Presets list, select Full-featured.

Do not change any of the other default settings.

Figure 1-10. Interval Timer MegaWizard

]
“ Interval Timer
About | Documentation

Timeout period

’VPennd: |1 me LI ‘
Timer counter size

’V Counter 5ize:|32 w | bits ‘

rHardware option:

eesal Full-featured -

Register

¥ | Viritable period
IF Rea

[¥ | Start/Stop control bits

e snapstiot

~Qutput signal

Cancel Einish

6.
7.

Click Finish. You return to the SOPC Builder System Contents tab, and an
instance of the interval timer now appears in the table of available components.

Right-click the interval timer and click Rename.

Type sys_cl k_ti mer and press Enter.

- For further details about the timer, refer to the Timer Core chapter in volume 5 of the

Quartus I1 Handbook.

Add the System ID Peripheral

The system ID peripheral safeguards against accidentally downloading software
compiled for a different Nios II system. If the system includes the system ID
peripheral, the Nios II Software Build Tools for Eclipse can prevent you from
downloading programs compiled for a different system.

Perform the following steps to add the system ID peripheral:

1.

In the list of available components, expand Peripherals, expand Debug and
Performance, and then click System ID Peripheral.

© December 2009 Altera Corporation Nios Il Hardware Development Tutorial

http://www.altera.com/literature/hb/nios2/n2cpu_nii51008.pdf

1-18
Creating the Design Example

2. Click Add. The System ID Peripheral MegaWizard interface appears. Figure 1-11
shows the GUL The system ID peripheral has no user-configurable options.

Figure 1-11. System ID Peripheral MegaWizard

x|
System ID Peripheral

Abouti| Documentation

System ID: 2085430651
Time stamp: 1254773008
A unigue ID is assigned every time the system is generated

I, Warning: The System ID component must be named "sysid” to be compatible with the Nios Il drivers af

4| | »

Cancel ﬂl

3. Click Finish. You return to the SOPC Builder System Contents tab, and an
instance of the system ID peripheral now appears in the table of available
components.

4. Right-click the system ID peripheral and click Rename.
5. Type sysi d and press Enter.

- For further details about the system ID peripheral, refer to the Systern ID Core chapter
in volume 5 of the Quartus Il Handbook.

Add the PIO

PIO signals provide an easy method for Nios II processor systems to receive input
stimuli and drive output signals. Complex control applications might use hundreds of
PIO signals which the Nios II processor can monitor. This design example uses eight
PIO signals to drive LEDs on the board.

Perform the following steps to add the PIO. Perform these steps even if your target
board doesn't have LEDs.

1. In the list of available components, expand Peripherals, expand Microcontroller
Peripherals, and then click PIO (Parallel I/O).

2. Click Add. The PIO (Parallel I/O) MegaWizard interface appears. Figure 1-12
shows the GUL

3. Do not change the default settings. The MegaWizard interface defaults to an 8-bit
output-only PIO, which exactly matches the needs for the design example.

Nios Il Hardware Development Tutorial © December 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2cpu_nii51014.pdf

Creating the Design Example

1-19

Figure 1-12. P10 MegaWizard

=
“ PIO (Parallel I/0)

Documentation

> InputOptions > Simulation

width (1-326ite) -5

[Direction

" Bidirectional (tristate) ports
" Input ports only
" Both input and output ports

& Output ports only

~Output Port Reset Value
Reset Value: ngg

Output Register

I~ Enable individual bit setting/clearing

Cancel | - E_,a:kl Mext > I Einish

Click Finish. You return to the SOPC Builder System Contents tab, and an
instance of the PIO now appears in the table of available components.

Right-click the PIO and click Rename.
Type |l ed_pi 0 and press Enter.

.o For further details about the PIO, refer to the PIO Core chapter in volume 5 of the

Quartus I1 Handbook.

Specify Base Addresses and Interrupt Request Priorities

At this point, you have added all the necessary hardware components to the system.
Now you must specify how the components interact to form a system. In this section,
you assign base addresses for each slave component, and assign interrupt request
(IRQ) priorities for the JTAG UART and the interval timer.

SOPC Builder provides the Auto-Assign Base Addresses command which makes
assigning component base addresses easy. For many systems, including this design
example, Auto-Assign Base Addresses is adequate. However, you can adjust the base
addresses to suit your needs. Below are some guidelines for assigning base addresses:

m Nios II processor cores can address a 31-bit address span. You must assign base

© December 2009 Altera Corporation

address between 0x00000000 and 0x7FFFFFFF.

Nios II programs use symbolic constants to refer to addresses. Do not worry about
choosing address values that are easy to remember.

Address values that differentiate components with only a one-bit address
difference produce more efficient hardware. Do not worry about compacting all
base addresses into the smallest possible address range, because this can create
less efficient hardware.

Nios Il Hardware Development Tutorial

http://www.altera.com/literature/hb/nios2/n2cpu_nii51007.pdf

1-20

Creating the Design Example

m SOPC Builder does not attempt to align separate memory components in a
contiguous memory range. For example, if you want an on-chip RAM and an off-
chip RAM to be addressable as one contiguous memory range, you must explicitly
assign base addresses.

SOPC Builder also provides an Auto-Assign IRQs command which connects IRQ
signals to produce valid hardware results. However, assigning IRQs effectively
requires an understanding of how software responds to them. Because SOPC Builder
does not deal with software behavior, it cannot make educated guesses about the best

IRQ assignment.

The Nios I HAL interprets low IRQ values as higher priority. The timer component
must have the highest IRQ priority to maintain the accuracy of the system clock tick.

To assign appropriate base addresses and IRQs, perform the following steps:

1. On the System menu, click Auto-Assign Base Addresses to make SOPC Builder
assign functional base addresses to each component in the system. The Base and
End values in the table of active components might change, reflecting the

addresses that SOPC Builder reassigned.

2. Click the IRQ value for the jtag_uart component to select it.

3. Type 16 and press Enter to assign a new IRQ value.

Figure 1-13 shows the state of the SOPC Builder System Contents tab with the

complete system.

Figure 1-13. System Contents Tab with Comp

lete System

Target Clock Settings:
’7Devioe Famiry:l Cyclone Il - Hame | Source I MHz I Add
clk_0 |External |s0.0 | —
REMOVE
Use |Conne... Moedule Name Description Clock Base End IRQ

= B onchip_mem
el
=2 ' B cpu
instruction_master
' data_master

jtag_debug_module

]
avalon_jtag_slave
=2 B sys_clk_timer
s1
=2 B sysid
control_slave
=2 3 led_pio

0On-Chip Memery (RAM or ROM)
‘Avalon Memory Mapped Slave
Nios Il Processor

‘Avalen Memory Mapped Master
‘Avalon Memory Mapped Master
‘Avalon Memory Mapped Slave
UTAG UART

‘Avalon Memory Mapped Slave
Interval Timer

‘Avalen Memory Mapped Slave
System ID Peripheral

‘Avalon Memory Mapped Slave
PIO (Paraliel VO)

‘Avalen Memory Mapped Slave

clk_0

clk_0

clk_0

clk_0

clk_0

clk_0

0x00004000

IRQ 0O
0x00008800

0x00003030

0x000032000

0x00003038

0x00003020

0x00007£52
IRQ 31
0x00008552
0x00003037 fig]
0x00003012 fi]

0x0000303£

0x000030Z£

Generate the SOPC Builder System

You are now ready to generate the SOPC Builder system. Perform the following steps:

1. Click the System Generation tab.

2. Turn off Simulation. Create simulator project files., which saves time because
this tutorial does not cover the hardware simulation flow.

3. Click Generate. The Save Changes dialog box appears, prompting you to save

your design.

Nios Il Hardware Development Tutorial

© December 2009 Altera Corporation

1-21
Creating the Design Example

4. Click Save. The system generation process begins.

The generation process can take several minutes. When it completes, the System
Generation tab displays a message "Info: System generation was successful.”
Figure 1-14 shows the successful system generation.

Figure 1-14. Successful System Generation

® Altera SOPC Builder - first_nios2_system.sopc (G\HW_Tutorial\niosII_hw_dev_tutorial 3C120\first nios2 s Em.s =10 5[
Eile Edit Module System View Tools Niesll Help

System Contents |

Option:
System module logic will be created in Verilog.

[~ simulation. Create project simulator files. Run Simulator

"Nius Il Tools

Nios Il Seftware Build Toels for Eclipse |

#2009.10.05 13:09:05 (*) Running Generator Program for sysid ;I
2009.10.05 13:09:07 (*) Running Generator Program for led_pio
#2009.10.05 13:09:08 (*) Making arbitration and system (top) modules.
#2009.10.05 13:09:14 (*) Generating Quartus symbol for top level: first_nios2_system
2009.10.05 13:09:14 (*) Generating Symbol C:/HW_Tutorialniosl_hw_dev_tutorial_3C120/first_nics2_system.bsf
#2009.10.05 13:09:14 (*) Creating command-line system-generation script: C:/HW _Tutorialniosll_hw_dev_tutorial 3C120/first_nios2_system_generation_script
#2009.10.05 13:09:14 (*) Running setup for HDL simulator: medelsim
#2009.10.05 13:09:14 (*) Completed generation for system: first_nios2_system.
#2009.10.05 12:08:14 (*) THE FOLLOWING S STEM MEMS HAWE BEEN GENERATED:
SOPC Builder database : C:/HW_Tuterialiniosll_hw_dev_tutorial_3C120/first_nios2_system.ptf
System HOL Model : C:/HW _Tutorialniosl_hw_dev_tutorial_3C120/first_nics2_system.v
System Generation Script : C:/HW_Tutorialniosl_hw_dev_tuterial_3C120/first_nios2_system_generation_script
#2008.10.05 13:08:14 (*) SUCCESS: 5 STEM GENERATION COMPLETED

@ Info: System generation was successful. -
4 »

*, Warning: The selected device family Cyclone Il does not mateh the Quartus project setting Stratix Il

Exit Help 4 Prev | Hext b | Generate

5. Click Exit to return to the Quartus II software.

Congratulations! You have finished creating the Nios II processor system. You are
ready to integrate the system into the Quartus II hardware project and use the Nios I
Software Build Tools for Eclipse to develop software.

«e For further details about generating systems with SOPC Builder, refer to Volume 4:
SOPC Builder of the Quartus II Handbook. For details about hardware simulation for
Nios II systems, refer to the AN351: Simulating Nios II Embedded Processor Designs.

Integrate the SOPC Builder System into the Quartus Il Project
In this section you perform the following steps to complete the hardware design:
m Instantiate the SOPC Builder system module in the Quartus II project.
m Assign FPGA device and pin locations.
m Compile the Quartus II project.

m Verify timing.

© December 2009 Altera Corporation Nios Il Hardware Development Tutorial

http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf
http://www.altera.com/literature/an/an351.pdf

1-22

Creating the Design Example

=
&

For further information about using the Quartus II software, refer to Introduction to the
Quartus II Software, the Quartus Il Handbook, and the Quartus II Software Interactive
Tutorial in the Training section of the Altera website.

Instantiate the SOPC Builder System Module in the Quartus Il Project

SOPC Builder outputs a design entity called the system module. The tutorial design
example uses the block diagram method of design entry, so you instantiate a system
module symbol first_nios2_system into the .bdf.

How you instantiate the system module depends on the design entry method of the
overall Quartus II project. For example, if you were using Verilog HDL for design
entry, you would instantiate the Verilog module first_nios2_system defined in the file
first_nios2_system.v.

To instantiate the system module in the .bdf, perform the following steps:

1. Double click in the empty space between the input and output pins. The Symbol
dialog box appears.

2. Under Libraries, expand Project.

3. Click first_nios2_system. The Symbol dialog box displays the first_nios2_system
symbol.

4. Click OK. You return to the .bdf schematic. The first_nios2_system symbol tracks
with your mouse pointer.

5. Position the symbol so the inputs on the symbol align with the wires on the left
side of the schematic.

6. Click the left mouse button to drop the symbol in place.

7. If your target board has LEDs that the Nios II system can drive, click and drag
LEDGI7..0] and connect it with the port out_port_from_the_led_pio[7..0] on the
first_nios2_system symbol. This action connects the LEDGJ7..0] output pins to the
first_nios2_system.

Figure 1-15 shows the completed Board Design File schematic using the LED pins.

Figure 1-15. Completed Board Design File Schematic

i Quartus II - G:/HW_Tutorial/niosII_hw_dev_tutorial_3C120/nios2_quartus2_project - nios2_quartus2_

&

»

out_pert_from_the_led_piol7..0]

4] l;I

8. If you are targeting a custom board that does not have LEDs, you must delete the
LEDGI?7..0] pins. To delete the pins, perform the following steps:

a. Click the output symbol LEDGI7..0] to select it.
b. On your keyboard, press Delete.

9. To save the completed .bdf, click Save on the File menu.

Nios Il Hardware Development Tutorial © December 2009 Altera Corporation

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/education/edu-index.html

Creating the Design Example

1-23

Assign FPGA Device and Pin Locations

In this section, you assign a specific target device and then assign FPGA pin locations
to match the pinouts of your board.

1. You must know the pin layout for the board to complete this section. You also
must know other requirements for using the board, which are beyond the scope of
this document. Refer to the documentation for your board.

To assign the device, perform the following steps:

For Altera development board reference manuals, refer to the Literature:
Development Kits page of the Altera website.

1. On the Assignments menu, click Device. The Settings dialog box appears.

2. In the Family list, select the FPGA family that matches your board.

If prompted to remove location assignments, do so.

3. Under Target Device, select Specific device selected in 'Available devices' list.

4. Under Available devices, select the exact device that matches your board.

i3

5. Click OK to accept the device assignment.

If prompted to remove location assignments, do so.

Figure 1-16 shows an example of the Device page of the Settings dialog box.

Figure 1-16. Assigning a Device in the Quartus Il Settings Dialog Box

Select the family and device pou want ta target for compilation.

- Device famil

Show in tvailable devices' list

Eamily: [Cyclore NI

ﬂ Package: Ary 52

Devices: IAII

j Fin count: Any -

Speed grade: |Ary i

— Target devics

() ther: n/a

" Auta device selected by the: Fitter

(« Specific device selected in %vailable devices' list

I~ Show advanced devices

I | HardCopy compatitle cnln

Device and Pin Options... |

Available devices:

Marne:

¥

576
b/b

576

| Core v. | LEs | User 1/ | Memar. Embed. | PLL ﬁ
EP3CE0U484CE T2y gi1z264 296 2010880 488 4
EP3CE0U484/7 1.2 1264 296 2010980 480 4
EP3CT20F484C7 12 119088 284 3981312 576 4
EP3CT20F484C8 T2y 119088 284 35981312 576 4
1.2 11 4
i 4
1. 4

i

~ Migration compatibility

Migration Devices.

0 migration devices selected

Companion devic:
HardCopy:
¥ | Limit DSF & B4 to HardCopy device resources

|]

To assign the FPGA pin locations, perform the following steps:

1. On the Processing menu, point to Start, and click Start Analysis & Elaboration to
prepare for assigning pin locations. A confirmation message appears when
analysis and elaboration completes.

© December 2009 Altera Corporation

Nios Il Hardware Development Tutorial

http://www.altera.com/literature/lit-devkits.jsp
http://www.altera.com/literature/lit-devkits.jsp

1-24

Creating the Design Example

AT R

Click OK.

On the Assignments menu, click Pins. The Quartus II Pin Planner appears.
In the Node Name column, locate PLD_CLOCKINPUT.
In the PLD_CLOCKINPUT row, double-click in the Location cell. A list of

available pin locations appears. Figure 1-17 shows the GUL

Figure 1-17. Assigning Pins with the Quartus Il Pin Planner

* Naeg | | o Ed] /25 (delau

Fie [fosal)

Node Name

Direction

Location

1/0 Bark

VREF Group

1/0 Standard Reserved

LEDG[7]

Cutput

2.5V (default)

LEDG[E]

COutput

2.5V (default)

LEDG[3]

Output

2.5V (default)

LEDG[4]

COutput

2.5V (default)

LEDG[3]

Output

2.5V (default)

LEDGZ

COutput

2.5V (default)

LEDG[1]

Output

2.5V (default)

LEDG[1]

COutput

BoRe e e e

PLD_CLOCKINPUT

Input

PIN_AHIS

BAN2

E——

=lel==l===]~]—~

<<nen node >

2.5V (default)

All Pins

6. Select the appropriate FPGA pin that connects to the oscillator on the board.

I

If your design fails to work, recheck your board documentation for this step

first.

7. In the PLD_CLOCKINPUT row, double-click in the I/O Standard cell. A list of
available I/O standards appears.

8. Select the appropriate I/O standard that connects to the oscillator on the board.

9. If you connected the LED pins in the board design schematic, repeat steps 4 to 8
for each of the LED output pins (LEDGI[0], LEDG[1], LEDGI2], LEDGI3],
LEDGI4], LEDGI5], LEDGI6], LEDGI[7]) to assign appropriate pin locations.

10. On the File menu, click Close to save the assignments.

11. On the Assignments menu, click Device. The Settings dialog box appears.

12. Click Device and Pin Options. The Device and Pin Options dialog box appears.
13. Click the Unused Pins tab. Figure 1-18 shows the GUL

Nios Il Hardware Development Tutorial

© December 2009 Altera Corporation

1-25
Creating the Design Example

Figure 1-18. The Unused Pins Tab of the Device and Pin Options Dialog Box

x
Voltage I Pin Placement I Emor Detection CRC
Capacitive Loading I Board Trace Model | 140 Timing

General I Configuration I Programming Files Unused Fins | Dual-Purpose Pins

Specify device-wide options for reserving all unuzed pinz on the device. Ta reserve
individual dual-purpose configuration pins, go to the Dual-Purpose Pins tab. To
reserve other ping individually, use the Assignment Editor.

Reserve all unuzsed pins: | with weak pull-up

Drescription:

Fieserves all unused ping on the target device in one of 5 states: ag inputs that are ;I
tri-stated, as outputs that drive ground, as outputs that drive an unspecified signal.

ag input tri-stated with bus-hald, or as input tri-stated with weak pull-up.

[}

ok | Cancel |

14. In the Reserve all unused pins list, select As input tri-stated with weak pull-up.
With this setting, all unused I/O pins on the FPGA enter a high-impedance state
after power-up.

Unused pins are set as input tri-stated with weak pull-up to remove contention which
might damage the board. Depending on the board, you might have to make more
assignments for the project to function correctly. You can damage the board if you fail
to account for the board design. Consult with the maker of the board for specific
contention information.

CAUTION

15. Click OK to close the Device and Pin Options dialog box.
16. Click OK to close the Settings dialog box.

- For further details about making assignments in the Quartus II software, refer to the
Volume 2: Design Implementation and Optimization of the Quartus Il Handbook.

Compile the Quartus Il Project and Verify Timing

At this point you are ready to compile the Quartus II project and verify that the
resulting design meets timing requirements.

You must compile the hardware design to create a .sof that you can download to the
board. After the compilation completes, you must analyze the timing performance of
the FPGA design to verify that the design will work in hardware.

To ensure the design meets timing, perform the following steps:

1. On the File menu, click Open.

© December 2009 Altera Corporation Nios Il Hardware Development Tutorial

http://www.altera.com/literature/hb/qts/qts_qii5v2.pdf

1-26

Creating the Design Example

L *® N o

In the Files of type list, select Script Files (*.tcl, *.sdc, *.qip).

Select hw_dev_tutorial.sdc and click Open. The file opens in the Text Editor.
Locate the following cr eat e_cl ock command:

create_cl ock -nanme sopc_clk -period 20 [get_ports PLD CLOCKI NPUT]

Change the period setting from 20 to the clock period (1/frequency) in
nanoseconds of the oscillator driving the clock pin.

On the File menu, click Save.
On the Assignments menu, click Settings. The Settings dialog box appears.
Under Category, select Timing Analysis Settings.

Turn on Use TimeQuest Timing Analyzer during compilation.

. Under Category, expand Timing Analysis Settings, and click TimeQuest Timing

Analyzer. Figure 1-19 shows the GUL

Figure 1-19. TimeQuest Timing Analyzer Settings

Settings - nios2_quartus2_project

Category:

- General
- Files
- Libraries
- Device
- Dperating Settings and Conditions
- Compilation Process Settings
- EDA Tool Settings
- Analysiz & Synthesiz Settings
- Fitter Settings
- Timing Analysis Settings
Timeluest Timing Analyzer
(- Classic Timing &nalyzer Settings
- &gsembler
- Design Assistant
- SignalT ap Il Logic Analyzer
- Logic Analyzer Interface
- Simulator Settings
- PowerPlay Power Analyzer Settings
- S5M Analyzer

-
[l [[

M
[

el
[+

TimeQuest Timing Analyzer

Specify TimeQuest Timing &nalyzer options.

x|

SDC files to include in the project

SDC filename: |

File name | Tupe |

Eemove |

hw_der_tutorial sdc Synopzys Desig...

¥ | Enable &dvanced [A0) Timing
[¥ Enable multicormer timing analysis during compilation
[¥ Enable common clock path pessimism remaval

[~ Report worst-case paths during compilation

r— Tl Script File for customizing reports during compilation

Tel Script File name: I

r Metastability analysi
Synchronizer identification: Ifo j
Description:
Azzociates a Synopsys Design Congtraint File [sdc) with this project. ;I
I
()8 Cancel |

4

11. Next to SDC Filename, click the browse (...) button.

12. Select hw_dev_tutorial.sdc and click Open to select the file.
13. Click Add to include hw_dev_tutorial.sdc in the project.

14. Turn on Enable multicorner timing analysis during compilation.

15. Click OK.

Nios Il Hardware Development Tutorial

© December 2009 Altera Corporation

1-27
Creating the Design Example

To compile the Quartus II project, perform the following steps:
1. On the Processing menu, click Start Compilation.

2. The Tasks window displays progress. The compilation process can take several
minutes. When compilation completes, a dialog box displays the message "Full
compilation was successful."

Click OK. The Quartus II software displays the Compilation Report.
Expand the TimeQuest Timing Analyzer category in the Compilation Report.

Click Multicorner Timing Analysis Summary.

AN

Verify that the Worst-case Slack values are positive numbers for Setup, Hold,
Recovery and Removal. If any of these values are negative, the design might not
operate properly in hardware. To meet timing, adjust Quartus II assignments to
optimize fitting, or reduce the oscillator frequency driving the FPGA.

<o For further details about meeting timing requirements in the Quartus II software,
refer to the Volume 1: Design and Synthesis of the Quartus I Handbook.

Congratulations! You have finished integrating the Nios II system into the Quartus II
project. You are ready to download the .sof to the target board.

Download Hardware Design to Target FPGA
In this section you download the .sof to the target board. Perform the following steps:

1. Connect the board to the host computer with the download cable, and apply
power to the board.

2. On the Tools menu in the Quartus II software, click Programmer. The Quartus II
Programmer appears and automatically displays the appropriate configuration
file (nios2_quartus2_project.sof). Figure 1-20 shows a portion of the GUIL

Figure 1-20. Quartus Il Programmer

1 Quartus II - C:/HW_Tutorial /niosII_hw_dev_tutorial_3C120/nios2_quartus2_project - nios2_guartus
Fle Edit Processing Tools Window

2, Hahre Sep. | U8Bt U561 Mo 1726

I™ Enable reaHtime ISP to allow backgiound programming [for MEX Il devices)

P Start | File |Device Checksum Usercode E';gf:gaanré Werify
W Siop nios?_quartus?_pioject sof EPACT20F760 (0GFBF7S FFFFFFFF

3. Click Hardware Setup in the upper left corner of the Quartus II Programmer to
verify your download cable settings. The Hardware Setup dialog box appears.

4. Select the appropriate download cable in the Currently selected hardware list. If
the appropriate download cable does not appear in the list, you must first install
drivers for the cable.

“ . e Forinformation about download cables and drivers, refer to the

Download Cables page of the Altera website.

5. Click Close.

© December 2009 Altera Corporation Nios Il Hardware Development Tutorial

http://www.altera.com/literature/hb/qts/qts_qii5v1.pdf
http://www.altera.com/support/devices/tools/altera/cables/tls-altera-cables.html

1-28

Creating the Design Example

6. Turn on Program/Configure for nios2_quartus2_project.sof.

7. Click Start. The Progress meter sweeps to 100% as the Quartus II software
configures the FPGA.

At this point, the Nios II system is configured and running in the FPGA, but it does
not yet have a program in memory to execute.

Develop Software Using the Nios Il Software Build Tools for Eclipse

In this section, you start the Nios II Software Build Tools for Eclipse and compile a
simple C language program. This section presents only the most basic software
development steps to demonstrate software running on the hardware system you
created in previous sections.

For a complete tutorial on using the Nios II Software Build Tools for Eclipse to
develop programs, refer to the Getting Started with the Graphical User Interface chapter
of the Nios II Software Developer’s Handbook.

In this section, you perform the following actions:
m Create new Nios II C/C++ application and board support package (BSP) projects.
m Compile the projects.

To perform this section, you must have the .sopcinfo file you created in “Define the
System in SOPC Builder” on page 1-11.

Create a New Nios Il Application and BSP from Template

In this section you create new Nios II C/C++ application and BSP projects. Perform
the following steps:

1. Start the Nios II Software Build Tools for Eclipse. On Windows computers, click
Start, point to Programs, Altera, Nios II EDS <version>, and then click Nios II
<version> Software Build Tools for Eclipse. On Linux computers, run the
executable file <Nios II EDS install path>/bin/eclipse-nios2.

2. If the Workspace Launcher dialog box appears, click OK to accept the default
workspace location.

3. On the Windows menu, point to Open Perspective, and then either click Nios II,
or click Other and then click Nios II to ensure you are using the Nios II
perspective.

4. On the File menu, point to New, and then click Nios II Application and BSP from
Template. The Nios II Application and BSP from Template wizard appears.
Figure 1-21 shows the GUL

Nios Il Hardware Development Tutorial © December 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

Creating the Design Example

1-29

Figure 1-21. Nios Il Application and BSP from Template Wizard

& Nios II Application and BSP from Template

Nios II Software Examples

Create new application and board support package based on software examples

I [3

~Target hardware information

SOPC Information File name: | C

$\HW _Tutorial\niosII_hw_dev_tutorial_3C120Vfirst_nios2_system,sopcinfo

CPU name:

[o =

r~ Application project

Project name: | count_binary

¥ Use default location

Project location: | C:\HW _Tutorial\niosII_hw_dev_tutorial_3C120'software\count_binary

~Project template

Blank Project
Board Diagnostics

Template description

Count Binary exercises the push-button, LCD, LED, and seven-segment display peripherals. Count Binary displays a

running count of 0x00 to 0xff on output peripherals, while responding to input on the push-buttons. This example runs

with or without the MicroC/0S-II RTOS and supports hardware systems that do not indude all the peripherals listed.
This software example runs on the following Nios IT hardware designs:

- Standard

- Full Featured

For details, dick Finish to create the project and refer to the readme. txt file in the project directory.

|

< Back Mext = | Einish I

Cancel

5. Under Target hardware information, next to SOPC Information File name,

browse to the <design files directory>.

6. Select first_nios2_system.sopcinfo and click Open. You return to the Nios II

Application and BSP from Template wizard showing current information for the
SOPC Information File name and CPU name fields.

7. In the Project name box, type count _bi nary.

8. In the Templates list, select Count Binary.
9. Click Finish.
The Nios II Software Build Tools for Eclipse creates and displays the following new

projects in the Project Explorer view, typically on the left side of the workbench:

m count_binary—Your C/C++ application project

m count_binary_bsp—A board support package that encapsulates the details of the
Nios II system hardware

Compile the Project

In this section you compile the project to produce an executable software image. For
the tutorial design example, you must first adjust the project settings to minimize the
memory footprint of the software, because your Nios II hardware system contains

only 20

© December 2009 Altera Corporation

KB of memory.

Nios Il Hardware Development Tutorial

1-30

Creating the Design Example

Perform the following steps:

1. In the Project Explorer view, right-click count_binary_bsp and click Properties.
The Properties for count_binary_bsp dialog box opens.

2. Click the Nios II BSP Properties page. The Nios II BSP Properties page contains
basic software build settings. Figure 1-22 shows the GUL

Figure 1-22. System Library Properties

type filter text

- Resource

Buiders

CJC++ Buid

CJC++ General

- MNios I1 BSP Properties
Project References

‘- Run/Debug Settings
Task Repository

& Properties for count_binary_bsp - Dlﬂ
Hios I BSP Properties & - A
Flags
Defined symbals: |n0ne
Undefined symbals: |nuna
Assembler flags: I -a,-gdwarf2
VWarning flags: | iall
User flags: | none
Debug level: On A
Optimization Level: |Off v
[V Reduced device drivers
[MadelSim only, no hardware support
™ SupportC++
I GPROF support
[¥ Small C library
< i

L=~ Though notneeded for this tutorial, note the BSP Editor button in the lower
right corner of the dialog box. You use the Nios II BSP Editor to access
advanced BSP settings.

3. Adjust the following settings to reduce the size of the compiled executable:

Turn on Reduced device drivers.

b. Turn off ModelSim only, no hardware support.

c. Turn off Support C++.
d. Turn off GPROF support.

e. Turn on Small C library.

Handbook.

. For further details about BSPs, refer to the Nios II Software Developer’s

4. Click OK. The BSP regenerates, the Properties dialog box closes, and you return to
the workbench.

5. In the Project Explorer view, right-click the count_binary project and click Build

Project.

Nios Il Hardware Development Tutorial

© December 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

1-31
Taking the Next Step

The Build Project dialog box appears, and the Nios II Software Build Tools for Eclipse
begins compiling the project. When compilation completes, a "build completed”
message appears in the Console view.

Run the Program on Target Hardware

In this section you download the program to target hardware and run it. To download
the software executable to the target board, perform the following steps:

1. Right-click the count_binary project, point to Run As, and then click Nios II
Hardware. The Nios II Software Build Tools for Eclipse downloads the program to
the FPGA on the target board and the program starts running.

L= If the Run Configurations dialog box appears, verify that Project name and
ELF file name contain relevant data, then click Run.

When the target hardware starts running the program, the Nios II Console view
displays character I/O output. Figure 1-23 shows the output. If you connected
LED:s to the Nios II system in “Integrate the SOPC Builder System into the
Quartus II Project” on page 1-21, then the LEDs blink in a binary counting pattern.

2. Click the Terminate icon (the red square) on the toolbar of the Nios II Console
view to terminate the run session. When you click the Terminate icon, the Nios II
Software Build Tools for Eclipse disconnects from the target hardware.

Figure 1-23. Console View Displaying Nios Il Hardware Output

I =i
P hiios 11 Console 532 L= NE N

You can make edits to the count_binary.c program in the Nios II Software Build Tools
for Eclipse and repeat these two steps to witness your changes executing on the target
board. If you rerun the program, buffered characters from the previous run session
might display in the Console view before the program begins executing.

«o Forinformation on running and debugging programs on target hardware, refer to the
tutorial in the Getting Started with the Graphical User Interface chapter of the Nios II
Software Developer’s Handbook.

Taking the Next Step

Congratulations! You have completed building a Nios Il hardware system and
running software on it. Through this tutorial, you have familiarized yourself with the
steps for developing a Nios II system:

®m Analyzing system requirements

m Defining and generating Nios II system hardware in SOPC Builder

© December 2009 Altera Corporation Nios Il Hardware Development Tutorial

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

1-32

Taking the Next Step

Integrating the SOPC Builder system into a Quartus II project
Compiling the Quartus II project and verifying timing

Creating a new project in the Nios II Software Build Tools for Eclipse
Compiling the project

Running the software on target hardware

The following documents provide next steps to further your understanding of the
Nios II processor:

Nios II Software Developer’s Handbook—This handbook provides complete reference
for developing software for the Nios II processor.

The software development tutorial in the Getting Started with the Graphical User
Interface chapter of the Nios II Software Developer’s Handbook—This tutorial teaches
in detail how to use the Nios II Software Build Tools for Eclipse to develop, run,
and debug new Nios II C/C++ application projects.

Nios II Processor Reference Handbook—This handbook provides complete reference
for the Nios II processor hardware.

Volume 4: SOPC Builder of the Quartus II Handbook — This volume provides
complete reference on using SOPC Builder, including topics such as building
memory subsystems and creating custom components.

Volume 5: Embedded Peripherals of the Quartus 11 Handbook — This handbook contains
details about the components provided free as part of the Nios II EDS.

For a complete list of all documents available for the Nios II processor, refer to the
Literature: Nios II Processor page of the Altera website.

Nios Il Hardware Development Tutorial © December 2009 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf

Additional Information
fAN IERA

Revision History
The following table shows the revision history for this tutorial.
“®.e Refer to the Nios Il Embedded Design Suite Release Notes page of the Altera website
for the latest features, enhancements, and known issues in the current release.

Date Version Changes Made

December 2009 | 3.0 Revised entire document to use Nios Il Software Build Tools for Eclipse.

October 2007 2.5 = Added altera.components project information.
m Minor text changes.

May 2007 2.4 m Updated to describe new SOPC Builder MegaWizard design flow.
m Added OpenCore Plus information.

March 2007 2.3 Maintenance release for v7.0 software.

November 2006 | 2.2 Minor text changes.

May 2006 2.1 Revised and simplified the tutorial flow.

May 2005 2.0 Revised the introductory information.

December 2004 | 1.1 Updated for the Nios Il 1.1 release.

September 2004 | 1.01 Updated for the Nios Il 1.01 release.

May 2004 1.0 Initial release.

How to Gontact Altera

For the most up-to-date information about Altera products, refer to the following

table.
Contact
Contact (Note 1) Method Address
Technical support Website www.altera.com/support
Technical training Website www.altera.com/training
Email custrain@altera.com
Product literature Website www.altera.com/literature
Non-technical support (General) | Email nacomp@altera.com
(Software Licensing) | Email authorization@altera.com

Note to Table:
(1) You can also contact your local Altera sales office or sales representative.

Typographic Conventions

This document uses the typographic conventions shown in the following table.

© December 2009 Altera Corporation Nios Il Hardware Development Tutorial

http://www.altera.com/support/ip/processors/nios2/rn/ips-niosii-rn.html
http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info-2

Additional Information
Typographic Conventions

Visual Cue

Bold Type with Initial Capital
Letters

Indicates command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box.

bold type

Indicates directory names, project names, disk drive names, file names, file name
extensions, and software utility names. For example, \qdesigns directory, d: drive,
and chiptrip.gdf file.

Italic Type with Initial Capital Letters

Indicates document titles. For example, AN 579: Stratix IV Design Guidelines.

Italic type

Indicates variables. For example, n+ 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters

Indicates keyboard keys and menu names. For example, Delete key and the Options
menu.

“Subheading Title”

Quotation marks indicate references to sections within a document and titles of
Quartus Il Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, dat al,
t di,andi nput . Active-low signals are denoted by suffix n. For example, r eset n.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c: \ gdesi gns\tutorial \chiptrip. gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESI GN), and logic function names (for
example, TRI).

1.,2.,3.,and Numbered steps indicate a list of items when the sequence of the items is important,
a., b, c.,andsoon such as the steps listed in a procedure.

EE Bullets indicate a list of items when the sequence of the items is not important.
1= The hand points to information that requires special attention.

A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

A warning calls attention to a condition or possible situation that can cause you
injury.

The angled arrow instructs you to press Enter.

The feet direct you to more information about a particular topic.

Nios Il Hardware Development Tutorial

© December 2009 Altera Corporation

	Nios II Hardware Development Tutorial
	Contents
	1. Nios II Hardware Development
	Introduction
	Design Example
	Software and Hardware Requirements
	OpenCore Plus Evaluation

	Nios II System Development Flow
	Analyzing System Requirements
	Defining and Generating the System in SOPC Builder
	Integrating the SOPC Builder System into the Quartus II Project
	Developing Software with the Nios II Software Build Tools for Eclipse
	Running and Debugging Software on the Target Board
	Varying the Development Flow

	Creating the Design Example
	Install the Design Files
	Analyze System Requirements
	Start the Quartus II Software and Open the Example Project
	Create a New SOPC Builder System
	Define the System in SOPC Builder
	Integrate the SOPC Builder System into the Quartus II Project
	Download Hardware Design to Target FPGA
	Develop Software Using the Nios II Software Build Tools for Eclipse
	Run the Program on Target Hardware

	Taking the Next Step

	Additional Information
	Revision History
	How to Contact Altera
	Typographic Conventions

