Introduction to the Altera SOPC Builder
Using VHDL Design

This tutorial presents an introduction to Altera’s SOPCl@&eli software, which is used to implement a system
that uses the Nios Il processor on an Altera FPGA device. ¥se development flow is illustrated by giving
step-by-step instructions for using the SOPC Builder inwcion with the QuartL@ Il software to implement a
simple system.

The last step in the development process involves configuhia designed circuit in an actual FPGA device,
and running an application program. To show how this is dineassumed that the user has access to the Altera
DE2 Development and Education board connected to a comphaethas Quartus Il and Ni€& Il software
installed.

The screen captures in the tutorial were obtained using thetQs Il version 9.0; if other versions of the
software are used, some of the images may be slightly diftere

Contents:

Nios Il System

Altera’s SOPC Builder

Integration of the Nios Il System into a Quartus Il Project
Running the Application Program

Altera’s Nios Il is a soft processor, defined in a hardwarecdp8on language, which can be implemented
in Altera’s FPGA devices by using the Quar@sﬂ CAD system. To implement a useful system it is necessary
to add other funcional units such as memories, input/outgetfaces, timers, and communications interfaces.
To facilitate the implementation of such systems, it is us&f have computer-aided-design (CAD) software for
implementing a system-on-a-programmable-chip (SOPQgrak SOPC Builder is the software needed for this
task.

This tutorial provides a basic introduction to Altera’s SOBuilder, which will allow the reader to quickly
implement a simple Nios Il system on the Altera DE2 board. &duller treatment of the SOPC Builder, the
reader can consult thdios Il Hardware Development TutoriaPh complete description of the SOPC Builder can
be found in theQuartus Il Handbook Volume 4: SOPC Builddihese documents are available on the Altera web
site.

1 Nios Il System

A Nios Il system can be implemented on the DE2 board as shoWwigire 1.

Host computer

USB-Blaster

interface
b Cyclone II
JTAG D JTAG UART ;
Nios II processor Tue . FPGA chip
module interface
Avalon switch fabric
. Flash .
On-chip SRAM SDRAM Parallel 1/0O Serial I/O
. . memory . .
memory interface interface . interface interface
interface
SRAM SDRAM Flash Parallel Serial
. . memory I/O port I/O port
chip chip . . .
chip lines lines

Figure 1. A Nios Il system implemented on the DE2 board.

The Nios Il processor and the interfaces needed to connethé&w chips on the DE2 board are implemented
in the Cyclone Il FPGA chip. These components are intercoiedeby means of the interconnection network
called the Avalon Switch Fabric. The memory blocks in thelGye Il device can be used to provide an on-chip
memory for the Nios Il processor. The SRAM, SDRAM and Flasoey chips on the DE2 board are accessed
through the appropriate interfaces. Parallel and serfaltioutput interfaces provide typical I/O ports used in
computer systems. A special JTAG UART interface is used tmeot to the circuitry that provides a Universal
Serial Bus (USB) link to the host computer to which the DE2rdas connected. This circuitry and the associated
software is called thelSB-Blaster Another module, called the JTAG Debug module, is providealibw the host
computer to control the Nios Il system. It makes it possiblpérform operations such as downloading programs
into memory, starting and stopping execution, setting kpeants, and collecting real-time execution trace data.

Since all parts of the Nios Il system implemented on the FP@GIf are defined by using a hardware descrip-
tion language, a knowledgeable user could write such codmptement any part of the system. This would be
an onnerous and time consuming task. Instead, one can uSOIRE Builder to implement a desired system
simply by choosing the required components and speciffiegorameters needed to make each component fit
the overall requirements of the system. In this tutorial, Wi illustrate the capability of the SOPC Builder by
designing a very simple system. The same approach is usesigndarge systems.

Host computer

USB-Blaster
Reset_n Clock interface

| |

Cyclone II
JTAG Debug JTAG UART FPGA chip

module interface

Nios II processor

Avalon switch fabric

On-chi Switches LEDs
memory parallel input parallel output
interface interface

/ \
SW7 SWO0 LEDG7 LEDGO

Figure 2. A simple example of a Nios Il system.

Our example system is given in Figure 2. The system realitegia task. Eight toggle switches on the DE2
board,SW7 — 0, are used to turn on or off the eight green LED# DG7 — 0. The switches are connected to the
Nios Il system by means of a parallel I/O interface configuredct as an input port. The LEDs are driven by the
signals from another parallel I/O interface configured toeacan output port. To achieve the desired operation, the
eight-bit pattern corresponding to the state of the switdies to be sent to the output port to activate the LEDs.
This will be done by having the Nios Il processor execute gram stored in the on-chip memory. Continuous
operation is required, such that as the switches are todgigéelights change accordingly.

We will use the SOPC Builder to design the hardware depicté&tdigure 2. Next, we will assign the Cyclone I
pins to realize the connections between the parallel inted and the switches and LEDs which act as I/O devices.
Then, we will configure the FPGA to implement the designedesys Finally, we will use the software tool called
theNios Il Monitor Programto assemble, download and execute a Nios Il program thabipesfthe desired task.

Doing this tutorial, the reader will learn about:

e Using the SOPC Builder to design a Nios llI-based system
¢ Integrating the designed Nios Il system into a Quartus ljgmio
e Implementing the designed system on the DE2 board

e Running an application program on the Nios Il processor

2 Altera’s SOPC Builder

The SOPC Builder is a tool used in conjuction with the QuatuSAD software. It allows the user to easily
create a system based on the Nios Il processor, by simplgtsajehe desired functional units and specifying
their parameters. To implement the system in Figure 2, we tminstantiate the following functional units:

e Nios Il processor, which is referred to as a Central Proogdshit (CPU)

e On-chip memory, which consists of the memaory blocks in thel@ye Il chip; we will specify a 4-Kbyte
memory arranged in 32-bit words

e Two parallel I/O interfaces
e JTAG UART interface for communication with the host compute
To define the desired system, start the Quartus Il softwatgrarform the following steps:

1. Create a new Quartus Il project for your system. As showkigare 3, we stored our project in a directory
calledsopc_builder_tutorigland we assigned the narfights to both the project and its top-level design
entity. You can choose a different directory or project naing be aware that the SOPC Builder software
does not permit the use of spaces in file names. For examplattempt to use a directory nansepc
builder tutorialwould lead to an error. In your project, choose the EP2C33E6hip as the target device,
because this is the FPGA on the DE2 board.

2. Selecflools > SOPC Builder, which leads to the pop-up box in Figure 4. Em@s_systeras the system
name; this will be the name of the system that the SOPC Buililegenerate. Choose VHDL as the target
HDL, in which the system module will be specified. CliGK to reach the window in Figure 5.

New Project Wizard: Directory, Name, Top-Level Entity [page 1 of 5] g|

‘what iz the working directory for this project?

|D heope_builder_tutorial

‘what iz the name of this project?

]

|Iights

‘what iz the name of the top-level design entity for this project? Thiz name iz case senzitive
and must exactly match the entity name in the design file.

]

|Iights

| Usze Existing Project Settings ...

]

| Mest > | Finizh | Cancel

Figure 3. Create a new project.

¥ Create New System

System Mame:| nios_system

X

Figure 4. Create a new Nios Il system.

3. Figure 5 displays the System Contents tab of the SOPC &uilehich is used to add components to the
system and configure the selected components to meet tlghdeguirements. The available components
are listed on the left side of the window. Before choosing@mponents, examine the area in the figure
labeledTarget. Check the setting for thBevice Family and ensure tha@yclone Il is selected.

. The Nios Il processor runs under the control of a clock. thizrtutorial we will make use of the 50-MHz

clock that is provided on the DE2 board. As shown in Figuret % possible to specify the names and
frequency of clock signals in the SOPC Builder display. If albeady included in this list, specify a clock
namedclk_Owith the source designated Bgternal and the frequency set to 50.0 MHz.

™ Altera SOPC Builder - nios_system.sopc* (D:\sopc_builder_tutorialinios_system.sopc)

File Edt Module System Miew Tools Help

: System Corterts || System Generation |

] Component Library Target Clock Settings

@ Nios I Processor Device Family: Name Source MHz
[#-Bridges and Adapters clk 0 External 50.0
[#-Interface Protocols -

#-Legacy Components
[#-Memories and Memory Controllers

[#-Peripherals
&@-PLL Use .. Module Name Description Clock Base End

Ol PN
~

| >

|
12
4
M

Newy... Edit Add Remove [Address Map...] [Fitters...] Fitter: Default

@ Info: No errors or warnings.

4 Pre [Next] [Generate]

Figure 5. The System Contents tab window.
5. Next, specify the processor as follows:

e On the left side of the window in Figure 5 sel@dibs Il Processor and clickAdd, which leads to the
window in Figure 6.

™ Nios Il Processor - cpu_0

[¢ jos 1T

Caore Nios Il

Nios II Processor

Caches and Memory Interfaces

Select a Nios Il core:

Nios Il

Advanced Features

[@Nios Ii/e ONios lI/s

RISC
32-bit

Selector Guide
Family: Cyclone Il

f.ystem: 0.0 MHz

cpuid: 0

Performance at 50.0 MHz Up to 5 DMIPS

MMU and MPU Settings

ONios lIF
RISC RISC
32-bit 32-bit
Instruction Cache Instruction Cache
Branch Prediction Branch Prediction
Hardware Multiply Hardware Multiply
Hardware Divide Hardware Divide
Barrel Shifter
Data Cache
Dynamic Branch Prediction
Up to 25 DMIPS Up to 51 DMIPS
1200-1400 LEs 1400-1800 LEs
Two MdKs + cache Three M4Ks + cache

Logic Usage 600-700 LEs

Memory Usage Twvo MaKs (or equiv.)
Hardware Multiply:

Reset Vector: Memory: |

Exception Vector: Memory:

+ |Offset: (oo
v |Oftset: [gy2p

Only include the MMU when using an operating system that explicitly supports an MMU
Fast TLE Miss Exception Vector: Memory:

Offset:

JTAG Debug Module

g

Custom Instructions

Warning: Reset vector and Exception vector cannot be set until memory devices are connected to the Nios Il processor

Figure 6. Create a Nios Il processor.

Choose Nios ll/e which is the simplest version of the prooegslick Finish to return to the window

in Figure 5, which now shows the Nios Il processor specifiethdi€ated in Figure 7. There may be

some warnings or error messages displayed in the SOPC BMielesages window (at the bottom of

the screen), because some parameters have not yet bedredpdghore these messages as we will
provide the necessary data later.

™™ Altera SOPC Builder - nios_system.sopc (D:\sopc_builder_tutoriallnios_system.sopc)

File Edit Module System View Tools Niosll Help

System Conterts | System Generation |
= Clock Settings
) Componert Library Target &
lios Il Processor Device Family:| Cyclone Il v MName Source MHz Add
(#-Bridges and Adapters clk 0 External 50.0
#-Interface Protocols
[#-Legacy Components
#-Memories and Memory Controllers
#-Peripherals
&@-PLL Use Con.. Module Name Description Clock Base End
B cpu_0 Nios Il Processor
instruction_master Avalon Memory Mapped Master clk_0
data_master Avalon Memory Mapped Master IRQ O I
jtag_debug_module Avalon Memory Mapped Slave 0x00000800 0x00000£f
< | 3
| | e | 3
New.. | | Edit add.. Remove || Edit = & v | x [addessMap.. | [Eiters.. | Fiter: Defaut
C To Do: cpu_0: No reset vector has been specified for this CPU. Please parameterize the CPU to resolve this issue
CD To Da: epu_0: No exception vectar has been specified for this CPU. Please parameterize the CPU ta resolve this issue
+\ Warning: cpu_0: Reset vector and Exception vector cannot be set until memory devices are connected to the Nios Il processor
oo |end] (omm)

Figure 7. The defined processor.

6. To specify the on-chip memory perform the following:

e SelectMemories and Memory Controllers > On-Chip > On-Chip Memory (RAM or ROM) and
click Add

e In the On-Chip Memory Configuration Wizard window, shown igu¥e 8, set the memory width to
32 bits and the total memory size to 4 Kbytes

e Do not change the other default settings
e Click Finish, which returns to the System Contents tab as indicated ur€&ig

™ On-Chip Memory (RAM or ROM) - onchip_memory2_0

“ On-Chip Memory |
v (RAM or ROM)

rMemory type
(3 RAM (ritable) () ROM (Read-only)

[[] Dual-port access
Read During Write Mode: 1,7

Block type: Auto v

Initialize memory content

Memory will be intialized from onchip_memory2_0 hex

[Size
Total memory size: l4 ”KBytes v

Minimize memory block u ay impact fmax)

-Read latency

Slave s1: Slave s2:

Memory initialization

[] Enable non-defautt inttialization file

User-created inttialization file: |- memory2_0 hex

[:] Enable In-System Memory Content Editor feature

Instance ID: l;.‘p; NE

Figure 8. Define the on-chip memory.

= Altera SOPC Builder - nios_system.sopc* (D:\sopc_builder_tutorial\nios_system.sopc)

File Edit Module System View Tools Niosll Help
System Cortents i iyie,m, 9§n§ra1ion\
T Clock Settings
#] Component Library -~ Target i
@ Nios Il Processor Device Family: Cyclone I v Name Source MHz Add
[+ Bridges and Adapters clk 0 External 50.0
[#-Interface Protocols WS
[#-Legacy Components
(=l-Memories and Memory Cortrollers
(+-DMA&
#-Flash | use | con Module Name Description Clock Base End
& On-Chlp B cpu_d Nios Il Processor
f' Avalon-ST Dua! Clock Fil instruction_master Avalon Memory Mapped Master clk_0
‘f' Avalon:ST Mulll-Chanr?e data_master Avalon Memory Mapped Master IRQ O
‘f' Avelon-ST R?und Robin jtag_debug_module Avalon Memory Mapped Slave 000000800 |0x00
j' Avalon.‘ST Single Clock | B onchip_memory2_0 On-Chip Memory (RAM or ROM)
$ On:Chea FEO Memery. 51 valon Memory Mapped Slave clk_0 000002000 |0x00
EROn-Chip Memory (RAM
+-SDRAM
| Fnirieed v|
< 3 |
4 | &3 | >
New... | Ecit Add... Ecit x| a| VvV | X [Address Map...] [Fiters...] Fitter: Default
D To Do: cpu_0: No reset vector has been specified for this CPU. Please parameterize the CPU to resolve this issue
2 To Do: cpu_0: No exception vector has been specified for this CPU. Please parameterize the CPU to resolve this issue
Coo [eir] [omeme]

Figure 9. The on-chip memory is included.

7. Specify the input parallel I/O interface as follows:

e SelectPeripherals > Microcontroller Peripherals > PI1O (Parallel I/O) and clickAdd to reach the
PIO Configuration Wizard in Figure 10

e Specify the width of the port to be 8 bits and choose the doeaif the port to bénput, as shown in

the figure

e Click Finish to return to the System Contents tab as given in Figure 11

10

™= PIO (Parallel 1/0) - pio_0

Input Optiol
Width
Wicth (1-32 bits) : _
rDirection

(O Bidirectional (tristate) ports

() Both input and output ports

(O Output ports only

~Output Port Reset Value— 7|

Reset Value:

Qutput Register

Enable individual bit setting/c

Warning: PIO inputs are not hardwired in test bench. Undefined values will be read from PIO input

Figure 10. Define a parallel input interface.

™ Altera SOPC Builder - nios_system.sopc* (D:\sopc_builder_tutorial\nios_system.sopc)

File Edit Module System View Tools MNosll Help
System Contents [System Generation|
7 Clock Seftings
#3 Componert Library Target &
@ Nios Il Processor Device Family:| Cyclone Il Name Source MHz
(#-Bridges and Adapters clk 0 External 50.0
[#-Interface Protocols
[#-Legacy Components
[#-Memories and Memory Controllers
[=-Peripherals
(#-Debug and Performance Use Con.. Module Name Description Clock Base End
Display) B cpu_d Nios Il Processor
= H_DGA Peripherals . instruction_master Avalon Memory Mapped Master clk_0
:ticeocaniroler Peripherels data_master Avalon Memary Mapped Master IRQ O
© Interval Timer Jjtag_debug_module Avalon Memory Mapped Slave 0x00000800 (0x00
. i B onchip_memory2_0 On-Chip Memory (RAM or ROM)
bi-Mutipracessor Coordination 51 valon Memory Mapped Slave clk_0 0x00002000 (0x00
&-PLL B pio_0 PIO (Parallel 110)
s1 Avalon Memory Mapped Slave clk_0 000000000 |0x00
By < J -
Ediit Edit = a v b 4 [Address Map...] [Fitters...] Fitter: Default
CJ To Do: cpu_0: No reset vector has heen specified for this CPU. Please parameterize the CPU to resolve this issue
2 To Do: cpu_0: No exception vector has been specified for this CPU. Please parameterize the CPU to resolve this issue
/4, Warning: pio_0: PIO inputs are not hardwired in test bench. Undefined values will be read from PIO inputs during simulation.
4 Prev [MNext] [Generate]

Figure 11. The parallel input interface is included.

11

8. In the same way, specify the output parallel I/O interface
e SelectPeripherals > Microcontroller Peripherals > PI1O (Parallel I/O) and clickAdd to reach the
P10 Configuration Wizard again
e Specify the width of the port to be 8 bits and choose the doeaif the port to beDutput
e Click Finish to return to the System Contents tab

9. We wish to connect to a host computer and provide a mearmefomunication between the Nios Il system
and the host computer. This can be accomplished by instiagtidne JTAG UART interface as follows:

e Selectinterface Protocols > Serial > JTAG UART and clickAdd to reach the JTAG UART Con-
figuration Wizard in Figure 12
¢ Do not change the default settings

e Click Finish to return to the System Contents tab

™ JTAG UART - jtag uart 0

“ JTAG UART
K

Parameter
Settings

Configuration

Write FIFO (Data from Avalon to JTAG)

Simulation

Buffer depth (bytes): | g4 v IR@ threshold: |5
[[] Construct using registers instead of memary blocks

Read FIFO (Data from JTAG to Avalon)
Buffer depth (bytes): | gq v' IR@ threshold: |5

[] Construct using registers instead of memory blocks

Figure 12. Define the JTAG UART interface.

10. The complete system is depicted in Figure 13. Note tleeS®PC Builder automatically chooses names for
the various components. The names are not necessarilyitegcenough to be easily associated with the
target design, but they can be changed. In Figure 2, we ussathes Switches and LEDs for the parallel
input and output interfaces, respectively. These namebearsed in the implemented system. Right-click
on thepio_0 name and then seleBename. Change the name to Switches. Similarly, chapige 1 to
LEDs.

11. The base and end addresses of the various componengsdadigned system can be assigned by the user,
but they can also be assigned automatically by the SOPC &ulde will choose the latter possibility. So,
select the command (using the menus at the top of the SOP@eBuwilindow)System > Auto-Assign

12

Base Addresses, which produces the assignment shown in Figure 14.

™ Altera SOPC Builder - nios_system.sopc* (D:\sopc_builder_tutorial\nios_system.sopc)

File Edit Module System View Tools Niosll Help

System Conterts | System Generation |

i+ Componert Library Target ok S
© Nios ll Processor Device Family: Name Source MHz
Bridges and Adapters clk_0 |External s0.0
[=-Interface Protocols
[#-Ethernet
#-PCl
[=+-Serial
@ Avalon-ST JTAG Interface Use Con.. Module Name Description Clock Base End
o Avalon-ST Serial Peripheral B cpuo Nias | Processor
. Aeti] instruction_master valon Memory Mapped Master clk_0
® (SPI(3Wire Serlal)) data_master Avalon Memory Mapped Master IRQ 0
- @ UART (RS-232 Serial Port) f* jtag_debug_module Avalon Memory Mapped Slave 0x00000800 |0x00
G-Legacy Components . B onchip_memory2_0 (On-Chip Memory (RAM or ROM)
9 Mer.nones and Memory Controllers f* 1 Avalon Memory Mapped Slave clk_0 0300002000 |0x00
G- Peripherdls © pio_0 PIO (Paralel 110)
£-PLL s1 Avalon Memory Mapped Slave clk_0 000000000 |0x00!
B pio_1 PIO (Parallel 10)
s1 Avalon Memory Mapped Slave clk_0 000000010 |0x00
JTAG UART
& ! > avalon_jtag_slave Avalon Memory Mapped Slave clk_0 0300000020 |0x00|
~ | < >

[Add...] [Remove] [Edit...] v b 4 [Address Map...] [Fitters...] Fitter: Defautt

C To Do: cpu_0: No reset vector has been specified for this CPU. Please parameterize the CPU to resolve this issue
D To Do: cpu_0: No exception vector has been specified for this CPU. Please parameterize the CPU to resolve this issue
\, Warning: pio_0: PIO inputs are not hardwired in test bench. Undefined values will be read from PIO inputs during simulation.

4 Pre [MNext P] [Generate]

Figure 13. The complete system.

= Altera SOPC Builder - nios_system.sopc (D:\sopc_builder_tutorialinios_system.sopc)

File Edt Module System View Tools Niosll Help

System Canterts | System Generation|

: Clack Seftings
3 Componert Library Target "

© Nios Il Processor Device Family:| Cyclone I v ‘ Name Source MHz |

-Bridges and Adapters etk _o [External 500 |
= Interface Protacols e
& Ethernet
Pl
= Serial
@ Avalon-ST JTA Use | Con.. Module Name Description Clock Base End Tags RG
il B cpu_d Nios Il Pracessor
Ml AC UART g instruction_master Avalon Memary Mapped Master
® SPI(3We Sery data_master Avalon Memary Mapped Master IR O IRQ 31

® UART (RS-232

Jftag_debug_module Avalon Memory Mapped Slave 000002800 |0x0000Z££f

Legacy Coifigonerts B onchip_memory2_0 [On-Chip Memary (RAM or ROM)
- Memories and Memory Cont st Avalon Memory Mapped Slave 0300001000 |0x0000L££E
- Peripherels

B Switches IPIO (Parallel 11O)

Avalon Memory Mapped Slave
PIO (Parallel 1/0)
Avalon Memory Mapped Slave | § 0x00003010 0x0000301f
JTAG UART
Avalon Memory Mapped Slave

-PLL 0x00003000 |0x0000300£

avalon_tag_slave 0x00003020 |0x00003027

Fitter: Default

AEOE

) To Do: epu_0: No reset vector has been specified for this CPU. Please parameterize the CPU to resolve this issue

£ To Do: epu_0: No exception vector has been specified for this CPU. Please parameterize the CPU to resolve this issue
/1, Warning: Switches: PIO inputs are not hardwired in test bench. Undefined values will be read from PIO inputs during simulation.

Figure 14. The final specification.

13

12. The behaviour of the Nios Il processor when it is reseefindd by its reset vector. It is the location in
memory device the processor fetches the next instructi@niithis reset. Similarly, the exception vector is
the the memory address the processor goes to when an interrafsed. To specify these two parameters,
perform the following:

¢ Right-click on thecpu_0 and then seledEdit to reach the window in Figure 15

Selectonchip_memory2_0 to be the memory device for both reset vector and exceptiotokeas
shown in the figure

e Do not change the default setting for offset

Click Finish to return to the System Contents tab

®
() [ponnon]

™ Nios Il Processor - cpu_0

\:& Nios II Processor

Parameter
Settings

Core Nios II

Core Nios Il

Custom Instructions

MMU and MPU Settings JTAG Debug Module

Caches and Memory Interfaces

Select a Nios Il core:

[®Nios Ize ONios Il/s |oNios 11 |

. RISC RISC RISC
Nios Il 32-bit 32-bit 32-bit
Selector Guide Instruction Cache Instruction Cache
Family: Cyclone I Branch Predinfon Branch Predimfcn
Hardware Multiply Hardware Multiply
Teystem: 50.0 MHz Hardware Divide Hardware Divide
e Barrel Shifter
cpuid: 0 Data Cache
Dynamic Branch Prediction
Performance at 50.0 MHz Up to 5 DMIPS Up to 25 DMIPS Up to 51 DMIPS
Logic Usage 600-700 LEs 1200-1400 LEs 1400-1300 LEs
Memory Usage Two MaKs (or equiv.) Two MakKs + cache Three MdKs + cache
Hardware Multiply:
Reset Vector: Memory: | onchip_memory2_0 v |Offset: [gxo |0x00001000
Exception Vector: Memory. | FT ol v |Offset: [nxz0 |oxo0001020

Only include the MMU when using an operating system that explicitly supports an MU
Fast TLB Miss Exception Yector: Memory: Offset:

Figure 15. Define the reset vector and exception vector.

13. Having specified all components needed to implementeb@eatl system, it can now be generated. Select
the System Generation tab, which leads to the window in Figure 16. Turn &iimulation - Create
simulator project files, because in this tutorial we will not deal with the simulatiof hardware. Click
Generate on the bottom of the SOPC Builder window. The generation gsegroduces the messages

14

displayed in the figure. When the message “SUCCESS: SYSTEMERAYION COMPLETED" appears,
click Exit. This returns to the main Quartus Il window.

' Altera SOPC Builder - nios_system.sopc (D:\sopc_builder_tutorial\nios_system.sopc)

File Edt Module System View Tools Nosll Help

System Contents | System Generation

Options
System module logic will be created in Verilog.

[Simulation. Create project simulator files.

Nios Il Tools

Nios Il IDE

T #2009.05.04 13:40:45 (*) Running Generator Program for tag_uart_0 A
#2009.05.04 13:40:46 (*) Making arbitration and system (top) modules
#2009.05.04 13:40:51 (*) Generating Quartus symbol for top level: nios_system
#2009.05.04 13:40:51 (*) Generating Symbol D:/sopc_builder_tutorialinios_system bsf
#2009.05.04 13:40:51 (*) Creating command-line system-generation script: D:/sopc_builder_tutorialinios_system_generation_script
#2008.05.04 13:40:51 (*) Running setup for HDL simulator: modelsim
#2009.05.04 13:40:51 (*) Completed generation for system: nios_system.
#2009.05.04 13:40:51 (*) THE FOLLOWING SYSTEM ITEMS HAVE BEEN GENERATED:
SOPC Builder database : Di/sopc_builder_tutorialinios_system ptf
System HDL Model : D:/sopc_builder_tutorialinios_system.v
System Generation Script : D:/sopc_builder_tutorialinios_system_generation_seript
#2009.05.04 13:40:51 (*) SUCCESS: SYSTEM GENERATION COMPLETED.
@ Info: System generation was successtul. v
< >

A 'Raming' Switches: Wo inputs are not hardwlver;in test bench. Unde;ined values wiﬁhe read 1rom?0 inputs during simu!at}an.

Figure 16. Generation of the system.

Changes to the designed system are easily made at any tine®pgning the SOPC Builder tool. Any com-
ponent in the System Contents tab of the SOPC Builder canleetsd and deleted, or a new component can be
added and the system regenerated.

3 Integration of the Nios Il System into a Quartus Il Project
To complete the hardware design, we have to perform thesoily

¢ Instantiate the module generated by the SOPC Builder imt@lnartus Il project
¢ Assign the FPGA pins
e Compile the designed circuit

e Program and configure the Cyclone Il device on the DE2 board

3.1 Instantiation of the Module Generated by the SOPC Builder

The instantiation of the generated module depends on thgrdestry method chosen for the overall Quartus I
project. We have chosen to use VHDL, but the approach isairfal both Verilog and schematic entry methods.

Normally, the Nios Il module is likely to be a part of a largersin. However, in the case of our simple
example there is no other circuitry needed. All we need tosdiostantiate the Nios Il system in our top-level
VHDL file, and connect inputs and outputs of the parallel /@tp, as well as the clock and reset inputs, to the
appropriate pins on the Cyclone Il device.

The VHDL entity generated by the SOPC Builder is in the fiiles_system.vhid the directory of the project.
Note that the name of the VHDL entity is the same as the systanerspecified when first using the SOPC Builder.

15

The VHDL code is quite large. Figure 17 depicts the portiothefcode that defines the port signals for the entity
nios_systemrThe 8-bit vector that is the input to the parallel pgwitchess calledin_port_to_the_SwitcheJhe
8-bit output vector is calledut_port_from_the LEDsThe clock and reset signals are calldkl Oandreset_n
respectively. Note that the reset signal is added autoaiticy the SOPC Builder; it is callegtset_nbecause it

is active low.

1883 Eentity nios_system is

1884 = port |

1885 -- 1) global signals:

1886 signal clk 0 : IN 3TD_LOGIC;

1887 signal reset_n : IN STD_LOGIC;

1888

1889 -- the_LEDs

1890 signal out_port_from_the LEDs : OUT STD_LOGIC_VECTOR (7 DOWNTO 0):
1891

1892 -- the_Switches

1893 signal in port_to_the_Switches : IN STD_LOGIC_VECTOR (7 DOWNTO 0)
1894)

1895 end entity nios_system;

1896

Figure 17. A part of the generated VHDL entity.

Figure 18 shows a top-level VHDL entity that instantiates Mios Il system. This entity is nameigjhts,
because this is the name we specified in Figure 3 for the tag-tkesign entity in our Quartus Il project. Note that
the input and output ports of the entity use the pin nameh#b0-MHz clock CLOCK_5Q pushbutton switches,
KEY, toggle switchesSW and green LEDs, EDG, that are specified in the DE2 User Manual. Type this code
into a file calledlights.vhd Add this file and all the *.vhd files produced by the SOPC Baiiltb your Quartus
Il project. Also, add the necessary pin assignments on the lafrd to your project. The procedure for making
pin assignments is described in the tutofalartus Il Introduction Using VHDL DesigrNote that an easy way
of making the pin assignments when we use the same pin namegtes DE2 User Manual is to import the
assignments given in the file call®E2_pin_assignments.cavthe directoryDE2_tutorials design_fileswhich
is included on the CD-ROM that accompanies the DE2 board andiso be found on Altera’s DE2 web pages.

Since the system we are designing needs to operate at a 5CMekzfrequency, add the needed timing as-
signment in your Quartus Il project. The tutoriEiming Considerations with VHDL-Based Desigi®ows how
this is done.

16

—— Implements a simple Nios Il system for the DE2 board.

—— Inputs: SW7-0 are parallel port inputs to the Nios Il system

- CLOCK 50 is the system clock

—— KEYO is the active-low system reset

—— Outputs: LEDG7O0 are parallel port outputs from the Nios Il system
LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

USE ieee.std_logic_unsigned.all;

ENTITY lights IS
PORT (

SW:IN STD_LOGIC_VECTOR(7 DOWNTO 0);
KEY :IN STD_LOGIC_VECTOR(0 DOWNTO 0);
CLOCK_50:IN STD_LOGIC;
LEDG : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
);

END lights;

ARCHITECTURE Structure OF lights IS
COMPONENT nios_system
PORT (
clk_0:IN STD_LOGIC;
reset n:IN STD_LOGIC;
out_port_from_the LEDs : OUT STD_LOGIC_VECTOR (7 DOWNTQ 0)
in_port_to_the_Switches : IN STD_LOGIC_VECTOR (7 DOWNTO 0)
);
END COMPONENT;

BEGIN

—— Instantiate the Nios Il system entity generated by the SORIGI&
Niosll: nios_system PORT MAP (CLOCK_50, KEY(0), LEDG, SW);

END Structure;

Figure 18. Instantiating the Nios Il system.

Having made the necessary settings compile the code. Youse®gome warning messages associated with
the Nios Il system, such as some signals being unused ordghawviong bit-lengths of vectors; these warnings can
be ignored.

3.2 Programming and Configuration
Program and configure the Cyclone Il FPGA in the JTAG programgmode as follows:

1. Connect the DE2 board to the host computer by means of a @BIB plugged into the USB-Blaster port.
Turn on the power to the DE2 board. Ensure that the RUN/PRO@Isvg in the RUN position.

2. Selecflools > Programmer to reach the window in Figure 19.

3. If not already chosen by default, select JTAG in the Mode Adso, if the USB-Blaster is not chosen by
default, press thelardware Setup... button and select the USB-Blaster in the window that pops up.

4. The configuration fildights.sofshould be listed in the window. If the file is not already lgtéhen click
Add File and select it.

17

5. Click the box undeProgram/Configure to select this action.

6. At this point the window settings should appear as inditah Figure 19. PresStart to configure the
FPGA.

L lights.cdf*

éa Hardware Setup... USE-Blaster [USE-0] Mode: | ITAG w» | Progress, 0%

™ Enable realtime ISP to allow background programming [for M3 1| devices)

P Start File Device Checksum Usercode E[;gﬂrgaﬂ:; Werify E:'?;cl:(k Examine SEE?:”[‘\" Erast
EP2C35FE72 00428789 FFFFFFFF

,Fﬂ Auto Detect

* Delete

s Add File..

B Change File

& sdd Device...

o |

Figure 19. The Programmer window.

4 Running the Application Program

Having configured the required hardware in the FPGA devtde,iow necessary to create and execute an appli-
cation program that performs the desired operation. Thisbeadone by writing the required program either in
the Nios Il assembly language or in a high-level languagé sisaC. We will illustrate both approaches.

A parallel I/O interface generated by the SOPC Builder iseasible by means of registers in the interface.
Depending on how the PIO is configured, there may be as mamuasdgisters. One of these registers is called
the Data register. In a PIO configured as an input interfdoe,data read from the Data register is the data
currently present on the PIO input lines. In a PIO configuredraoutput interface, the data written (by the Nios
Il processor) into the Data register drives the PIO outmedi If a PIO is configured as a bidirectional interface,
then the PIO inputs and outputs use the same physical lindisisicase there is a Data Direction register included,
which determines the direction of the input/output trandfeour unidirectional P1Os, it is only necessary to have
the Data register. The addresses assigned by the SOPC Bari&lex00003000 for the Data register in the PIO
called Switches and 0x00003010 for the Data register in teclled LEDs, as indicated in Figure 14.

4.1 Using a Nios Il Assembly Language Program

Figure 20 gives a Nios Il assembly-language program thatements our trivial task. The program loads the
addresses of the Data registers in the two PIOs into procesgigters-2 andr3. It then has an infinite loop that
merely transfers the data from the input PEyitchesto the output PIOL.EDs

The program includes the assembler directive

.include "nios_macros.s"

which informs the Assembler to use the Nios Il macros thatipéow the movia pseudoinstructions can be
assembled.

18

.include "nios_macros.s"

.equ Switches, 0x00003000
.equ LEDs, 0x00003010

.global _start
_start:
movia r2, Switches
movia r3, LEDs
loop: Idbio r4,0(r2)
stbio r4, 0(r3)
br loop

Figure 20. Assembly language code to control the lights.

The directive
.global _start

indicates to the Assembler that the labstartis accessible outside the assembled object file. This laktblei
default label we use to indicate to the Linker program thdregg of the application program.

For a detailed explanation of the Nios Il assembly languag#uctions see the tutoriftitroduction to the
Altera Nios Il Soft Processor

Enter this code into a filéights.sand place the file into a working directory. We placed the fil ithe
directorysopc_builder_tutorialapp_software The program has to be assembled and converted into an SeReco
file, lights.sreg suitable for downloading into the implemented Nios Il gyst

Altera provides themonitor software, calledAltera Monitor Program for use with the DE2 board. This
software provides a simple means for compiling, assemlalimjdownloading of programs into a Nios Il system
implemented on a DE2 board. It also makes it possible for ffee to perform debugging tasks. A description of
this software is available in th<era Monitor Programtutorial.

Open the Altera Monitor Program, which leads to the windowigure 21. This software needs to know the
characteristics of the designed Nios Il system, which arergin the ptf filenios_system.ptClick theFile > New
Project menu item to display the New Project Wizard window, showniguFe 22, and perform the following
steps:

1. Enter thesopc_builder_tutoriatlirectory as the Project directory by typing it directlyarthe Project direc-
tory field, or by browsing to it using thBrowse... button.

2. Enterlights as the Project name and cliblext >, leading to Figure 23.
3. From theSelect a System drop down box, selectCustom System>

4. Click Browse... beside theSystem Description field to display a file selection window and choose the
nios_system.pffle. Note that this file is in the design directasgpc_builder_tutorial

5. Specifying the .sof file in the Quartus Il Programming ($®He field allows the user to download the
programming file onto the board from the Altera Monitor Paxgr Note that we need not specify this file
as we have already downloaded the programming file onto tasdbo

6. Click Next >.

7. SelectAssembly Program as the program type from the drop down menu and dNekt >, leading to
Figure 24.

19

8. Click Add... to display a file selection window and choose liigats.sfile and clickNext >. Note that this

10.

file is in the directorysopc_builder_tutoridlapp_software

. Ensure that thelost Connection is set to the USB-Blaster, ti&rocessor is set tocpu_0and theTerminal
Device is set to the JTAG UART, and clickext >

The Altera Monitor Program also needs to know where td tha application program. In our case, this is
the memory block in the FPGA device. The SOPC Builder assighe nameonchip_memory2_ this
block. As shown in Figure 25, the Monitor Program has alresalgcted the correct memory device.

11. Having provided the necessary information, ckékish to confirm the system configuration.

+ Altera Monitor Program [Nios II]

File Settings Actions ‘Windows Help

EBX

HME RSB 2 mnt it

Disassembly

Registers

&)
D] X

[«]

Ld

Terminal

Disassembly Breakpoints | Memory | Watches / Trace /

X

Info & Errors

Info &Errors | GDB Server /

Figure 21. The Altera Monitor Program window on startup.

20

+ New Project Wizard

Specify a project name and directory

Project directory:

|D:1sopc_builder_tutorial | [Browse. .. I

Project name:
|Iights |

Figure 22. Specify the project directory and name.

+ New Project Wizard

Specify a system

Select a system

] <Custom System: v|

Specify a Nios II system by selecting a system description (PTF) file, and an optional Quartus II programming (SOF)
file.

System details
System description (PTF) file:

iD:'q,sopc_builder_tutorial‘gnios_systern,ptf] l Browse... l

Quartus IT programming (SOF) file {optional):

] [IBrowse...]

The SOF file represents the FPGA programming file For the Nios II system, If it is specified here, then the Monitor
| Program can be used to download this programming file onto the board. Otherwise, the system will need to be
| downloaded using some other method {for example, by using Quartus II).

l < §ack| I Mext = I | Cancel]

Figure 23. The System Specification window.

21

Specify program details

Source files
First source file is used to determine the name of the binary program file,

D:\sopc_builder_tutorial\app_softwarellights.s Add...

Remove

Down

Program options

|_oown_|
!

Start symbol: | _start

| <§ack| | Mext > I [Finish I [Cancel I

Figure 24. Specify the binary file to use.

New Project Wizard @

Specify program memory settings

Processor's reset and exception vectors (read-only)
Reset vector address (hex): 1000
Exception vector address (hex): 1020

Memory options

Here you can specify the starting addresses of sections identified by .text and .data assembler directives. These
addresses can be in the same or in different memories {on-chip, SDRAM, ...). They can be used to ensure that the
.text and .data sections do not overlap with other sections, such as .reset and .exceptions, If .text and .data are
specified to have the same address, the .data section will be placed right after the .text section by the linker.

.text section

Memory device: lonchip_memoryz_o;‘sl (1000h - 1Fffh) vJ

Start offset in device (hex): J U|

.data section

Memory device: lonchip_memoryz_ﬂjsl {1000h - 1fffh) v|
Start offset in device (hex): [0]
| < Back I | Finish] | Cancel |

Figure 25. The program memory settings window.

22

Next, to assemble and download fight.s program, click theActions > Compile & Load menu item. The
Altera Monitor Program will invoke an assembler progranticiwed by a linker program. The commands used to
invoke these programs, and the output they produce, carelbediin thelnfo & Errors window of the Monitor
Program window. After the program has been downloaded dwdoard, the program is displayed in fis-
assembly window of the Monitor Program as illustrated in Figure 26.s8kve thatnovia is apseudoinstruction
which is implemented as two separate instructions.

Click the Actions > Continue menu item to execute the program. With the program running,can now
test the design by turning the switché&$}7 to ST0 on and off; the LEDs should respond accordingly.

+# Altera Monitor Program [Nios II] - lights.ncf : lights.srec [Paused] g@@
File Settings Actions Windows Help
HE @@ mmlk MW
Disassembly - X | Registers - X
= ; :l e Reg | Vale |
Goto instruction | Address (hex) or symbol name: Go Hide | || |——— |
2 [l [4 pc 0x00001000 ||
.global _start ||| lzexo 0x00000000
rl 0x00000000
_start: r2 0x00000000
movia r2, Switches r3 0x00000000
_stare: rd 0x00000000 |2
0x00001000 orhi r2, zero, 0x0 L5 0x00000000 |2
0x00001004 ori £z, r2, 0x3000 6 0x00000000
movia r3, LEDs L] ‘; gxgggggggg
0x00001008 orhi 3, zero, 0 2 :9 0100000000
0x0000100c ori r3, r3, 0x3010 = ti05056500
o ril 0x00000000
loop: ldbio x4, 0(xz) 12 0x00000000
loop: I3K] 0x00000000
0x00001010 ldbio x4, 0{r2) rla 0%00000000
stbio rd, 0(r3) rls 0x00000000
0x00001014 sthio rd, 0{r3) —| |x16 0x00000000
[0ANN101E hr —Ove (0v00O01010: loan) W |17 0x00000000
K1 DI |leis o
Di bly / Breakpoints / Memory | Watches / Trace / rl9 0x00000000 ||
Terminal = X | Info & Errors - X
Verified OK
JTAG UART link established using cable "USB-Blaster verithed ok) E
B . & Connection established to GDB server at localhost:240!
[USB-0]", device 1, instance 0x00
Symbols loaded.
Source code loaded.
INFO: Program Trace not enabled, because trace tequn::
|w
Ll | D
Info &Errors | GDB Server /

Figure 26. Display of the downloaded program.

The Monitor Program allows a number of useful functions tgedormed in a simple manner. They include:
e single stepping through the program
e examining the contents of processor registers
e examining the contents of the memory
e setting breakpoints for debugging purposes
e disassembling the downloaded program

A description of this software and all of its features is &gl in theAltera Monitor Programtutorial.

4.2 Using a C-Language Program

An application program written in the C language can be hethill the same way as the assembly-language pro-
gram. A C program that implements our simple task is giverignfe 25. Enter this code into a file callkghts.c

23

#define Switches (volatile char *) 0x0003000
#define LEDs (char *) 0x0003010

void main()
{ while (2)

*LEDs = *Switches;
}

Figure 27. C language code to control the lights.

Perform the following steps to use this program:

1. Disconnect from the current debugging session by cligktie Actions > Disconnect menu item.

2. Click the Settings > Program Settings... menu item to launch the Project settings window with the
Program settings tab selected.

3. SelectC Programas theProgram Type in the drop-down list. The Monitor Program may prompt you to
clear any currently selected source files. Clds to proceed. Note thdights.shas been removed from
the list of source files.

4. Click Add... and choose thights.cfile.

[

. Click Ok to confirm the new program configuration.

The steps to compile, load, and run the program are the safoea@s assembly language program.

Copyright(©2009 Altera Corporation. All rights reserved. Altera, Thregtammable Solutions Company, the
stylized Altera logo, specific device designations, ana#ier words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, thentiatte and service marks of Altera Corporation in
the U.S. and other countries. All other product or servicmes are the property of their respective holders.
Altera products are protected under numerous U.S. andgioneatents and pending applications, mask work
rights, and copyrights. Altera warrants performance osémiconductor products to current specifications in
accordance with Altera’s standard warranty, but resefvesight to make changes to any products and services at
any time without notice. Altera assumes no responsibilitiiability arising out of the application or use of any
information, product, or service described herein excepbagressly agreed to in writing by Altera Corporation.
Altera customers are advised to obtain the latest versialeate specifications before relying on any published
information and before placing orders for products or s&wi
This document is being provided on an “as-is” basis and ageonamodation and therefore all warranties, rep-
resentations or guarantees of any kind (whether expregdienor statutory) including, without limitation, war-
ranties of merchantability, non-infringement, or fithesssd particular purpose, are specifically disclaimed.

24

