
 Audio Interface 
 
The Altera University Program provides a hardware controller, called the Audio Core, to interact with the 
Audio CODEC (enCOder/DECoder) on the Altera DE2 Series Boards and provides an interface for audio 
input and output. 
 
Functional Description 
 
The Audio Core supports both, audio input and audio output simultaneously. Figure 1 shows a block diagram 
of the Audio Core. 
 

 
Fig. 1. Block diagram of an Audio Core. 
 
To guarantee that the left and right audio output channels are synchronized, data will not play until both 
channels are received. If only one channel is to be played, the other channel must have zeros written to it. The 
Audio Core contains four FIFOs for the In and Out audio data, both having the right and left audio channels. 
Each FIFO can store up to 128 32-bit words. 
 
The Audio Core requires certain clock frequencies based on the sample rate of the audio. It also requires that 
the audio chip be initialized with some default values. These requirements are met by using some other 
University Program IP cores. 
 
Designers use the Audio Core’s Configuration wizard in the SOPC Builder to specify the desired features. In 
the configuration wizard, the user can choose the mode of the Audio Core by selecting Audio Out and/or 
Audio In. In addition, the Data Width per Channel can be specified. Data widths of 16, 20, 24, and 32 bits are 
supported. 
 
Notes: 

 It is recommended to also include the Audio and Video Config core. This core automatically 
configures some required settings of the audio CODEC chip on the DE2 series boards. Refer to the 



Audio and Video Config documentation for more information on properly initializing the audio 
codec. 

 The user must also include the External Clocks for DE Board Peripherals core and choose the proper 
audio clock setting for the Audio Core. 

 
 
Audio Sub-system in the DE2_70_Media_Computer 
 
The DE2_70_Media_Computer contains an audio system that can be used to a access the Audio CODEC 
for recording and playback. The Audio Port provides a link between a program executed by the Nios II 
processor and the Audio CODEC connected to the external microphone and speaker system, as shown in 
Figure 2. 
 

 
Fig. 2. The audio sub-system. 
 
 
Register Map 
 
User programs can access the Audio Port through its I/O interface in the DE2_70_Media_Computer. The 
interface includes four memory-mapped registers. Figure 3 shows the registers and their location in the 
memory address space. 
 

 
 
Fig. 3. The audio access registers on the DE2_70_Media_Computer. 
 
The control register contains six bits that are used to control the Audio Port: 

 RE and WE bits enable the Audio Port to generate an interrupt request when the Record FIFO is 
75% full (RE), or the Playback FIFO is less than 25% full (WE), or both. 

 CR and CW bits clear the Record and Playback FIFO buffers, respectively. 



 RI and WI bits are set to 1 when interrupt requests are raised. RI becomes 1 when the Record 
FIFO is at least 75% full; WI bit becomes 1 when the Playback FIFO is less than 25% full. 

 
The Fifospace register indicates the current state of each of the FIFOs. Each FIFO has space for 128 samples. 
The number of samples available in the Left/Right Record FIFO can be read from the RALC/RARC field. 
Similarly, the amount of space available for samples in the Left/Right Playback FIFO can be read from 
the WSLC/WSRC field. 
 
The Leftdata and Rightdata registers are used either to load data into the Playback FIFOs (left or right) by 
writing to the registers, or to retrieve sound from the Record FIFOs by reading these registers. Users 
should take care to check the state of Record and Playback FIFOs before reading or writing to Leftdata and 
Rightdata registers. If the Record FIFOs are empty, then the contents of the Leftdata and Rightdata registers 
are invalid. Also, if the Playback FIFOs are full, then writes to the Leftdata and Rightdata registers will be 
ignored by the Audio Port. 
 
Exercises: 
 

1. Write a C program that uses the Audio Port to record and play back sounds. Your program 
should read the data from the Audio Port and store it in memory when the user presses the KEY1 
pushbutton. The recording should be played back by writing samples stored in memory to the 
Audio Port when the user presses the KEY2 pushbutton. 
 

2. Write a C program to create an echo effect. You can achieve this by writing a C program that 
reads sounds from the microphone and produces the sound back through the speakers. 
However, moments later the same sound should repeat, at a lower volume, and again a few 
moments after that to simulate the effect of an echo. The echo effect should be superimposed on 
(added on top of) any sound being provided through the microphone. 

 
References 
 
[1] Altera, “Audio Core,” July 2010. 


