VHDL Part |I: Code Structure

One important way of representing a digital logic circuit is through the use of a hardware description language.
A hardware description language allows you to describe the desired behavior of your circuit using text, and then
simulate the operation of your circuit.

Although lines in a hardware description language look similar to lines of code written in a programming
language (such as C++ or Java), there is a critical distinction: lines of code in a programming language are
executed line by line sequentially without any reference to atime axis. Hardware description languages, on the
other hand, attempt to model actual circuit operation, which may be very much time dependent. Specifically,
lines of code in VHDL can execute concurrently or sequentially, depending on the scenario (as we will see).
For this reason, we will normally say “Look at this VHDL code” instead of “Look at thisVHDL program’.

By looking at simulation results based on our hardware description, we can spot design flaws before
implementing hardware (or even drawing a schematic).

It isimportant to emphasize again that for al but the ssmplest designs, you always want to

Simulate a circuit before building it. After verifying your design through simulation, then you build the
physical circuit.

The two major hardware description languages in use today are both |EEE standards:

e Verilog (developed by Gateway, now owned by Cadence Design)
e VHDL (developed by the Department of Defense)

Verilog has the reputation for being somewhat easier to learn. Thus, guess which one we are going to use?
VHDL (welcome to the DoD!)

VHDL stands for Very high-speed integrated circuit Hardware Description Language. The language has a
formal syntax that must be followed.

VHDL code has three main sections:

LIBRARY
declarations

Basic
ENTITY VHDL code

ARCHITECTURE

Figure 2.1
Fundamental sections of a basic VHDL code.

From Pedroni, Circuit Design with VHDL, MIT Press, 2004

A template for avhdl fileis shown below (not aworking file).

1 H-- L library clause declares & name as a library. It
2 L_- does not create the library; it simply forward declares it.
3 library <library name>;
4
5 —— We will use IEEE library
& likrary IEEE:
=
g —— Import all the declarations in a package
9 use <library namwe>.<package namer.all;
10
11 —— Cormonly imported packages:
1z
13 -— BIT, 2TD_LOGIC and 3TD LOGIC VECTOR types, and relevant functions
14 use ieee.std logic 1164.all:
15
1a —— 3IGHNED and UNIIGHNED types, and relevant functions
17 use ieee.numeric std.all;
15
19 [EENTITY <entity namex IS
zo | PORT
21 = [
22 —— Input ports
23 <hnarne > : IN <typex:
24 <rnatne > : IN <typer = <default wvaluex;
25
26 —— Inout ports
=277 < hatne > v INOUT <typex;
28
29 —-— Cutput ports
30 <rnatne > 1 OUT «typex;
31 <natne > i OUT «<typer := <default wvalue>
32 m 13
33 END <entity name:;
34 =
35 ElARCHITECTUERE <arch name> OF <entity name> I3
3G
37 —— Declarations [(optional)
38 =
39 [FIBEGIN
40 —— This section includes statements [(code)] that define the kbehavior of this entity.
41
4z = —— Jomwe commonly used statements:
43 —— Concurrent 3ignal Assignment [(optional)
44 -— Process Statement [(optional)
45 —-— Conditional Signal Assignment [(optional)
16 —-— Belected Fignal Assigrent (optional)
47 —— Component Instantiation Statement (optional)
45 —-— Gererate Itatement [(optional)
49 -
50 END <arch name>;
1

The library declarations: This section lists the libraries of code that others have aready written that you would
like to usein your own code. We will have this section read:

LI BRARY i eee;
USE i eee.std | ogic_1164.all;

This looks cryptic, but basicaly it makes available to you a set of code that you can freely use in your own
design. For now, just consider this an opening stamp that you place on your code.

Note the semicolons in the two lines above. They are not optional.
The semicolon indicates the end of a statement.

As we write VHDL, we may want to include comments on our code—basically notes to ourselves that we do
not want to be viewed as part of the intrinsic design. We can add comment to our code by using a double-dash.
For example, the following library declaration will be treated exactly the same as the one above:

LI BRARY i eee;
USE i eee.std | ogic_1164.all;
-- This is exciting stuff!

Comments can be placed in the same line as code, such as:

LI BRARY i eee; -- EC262 = Fun Tines
USE i eee.std | ogic_1164.all;

The entity section: This section specifies the name of our design, and all of its inputs and outputs. What the
design actually does to the inputs to arrive at the output is NOT of interest in this section.

The basic format for the entity section using just input bits and output bitsis:

ENTI TY entity name | S
PORT(
input_1, input_2, ..., input_n: IN BIT;

output_1, output_2, ..., output_m QJT BIT
);
END entity name;

After theword “ent i t y” isthe entity name that you pick. Can you pick any nhame?

Entity names (in fact, all names that you choose to represent items in your code) must begin with a
letter, and then can consist of letters, numbers, or the underscore character.

Example. Which of the following are valid names that | can choosein VHDL?

1. EC262

2. Slippery_fish

3. Project_25

4. Buff _chicks

5. 2bae_surprise_quiz
6. _bae surprise_quiz

7. bae_surprise_quiz_

8. bae__surprise_quiz

9. di sconnect

10. ec262 (if | amaready using number 1 above)

1, 2, 3 and 4 are okay.

5isbad: can't start with a number.

6 is bad: can't start with an underscore.

7isbad... did I mention that it can’t end with an underscore

8isbad... did | mention that it can’'t have more than one underscore consecutively

9isbad... did | mention that there are about 100 words that have special meaning in VHDL and cannot
be used as names for your choosing.

10 is potentialy bad... did | mention that VHDL is not case —sensitive, so EC242 and ec242 will refer to
the same thing.

Appendix E in your text listsal the VHDL reserved words.
Between the open and close parenthesis we list all of our inputs and outputs.
Look at the line of code:
input_1, input_2, ..., input_n: IN BIT;
Consider this line to be two sections, divided at the colon. Everything to the left of the colon is alist of names,

and everything to the right of the colon describes what those names are to function as. So, if we were to have
theline:

a, b: INBIT;

that would mean that my entity isto have two ports named a and b that are to function as input bits.

Note that BIT is adatatype. Other datatypes are listed in the table below.

From Pedroni, Circuit Design with VHDL, MIT Press, 2004

The architecture section: This section tells how the entity that you named above actually carries out what you
intended it to do. How the outputs are derived from the inputs is detailed in this section.

4

The basic format for the architecture section is:

ARCHI TECTURE arch_name OF entity name | S
BEGA N

the statements that define the behavior ;

END arch_name ;

Example

To ground thisin an actua example, let’s write VHDL code to implement lab 1. Recall that you designed and
implemented a circuit for the following logic function,
F(AB,C)= AB+ ABC' + BC

The circuit diagram for thisfunction is:

A AND2
B .’ o o o Y
® S/
' ﬁ s .. dnst N .
L .. inst4 - . 'AND3 .| . . OR3 -
S ' \
SRR A) X
c o Nobg ' ' inst2 77 linst3
o indts
Alibs o L o
inst1
Library declaration:
1 ——Likrary declaration
2
3 library IEEE: —— Declare which WVHDL library
4 use IEEE.std logic 1164.s8ll; -- and packages To use
[=
Entity section:

7 —-— Entity declaration
a

a HENTITY labl vhdl I3
10 = PORT |

11 —— Input ports

12 L, B, C : IN EIT : -— can use std logic also

13

14 —— mtput port

15 F: oUT BIT -— can use std logic also

11: END labl wvhdl ;

Note again that the entity section isjust a description of the inputs and outputs—the pins of the circuit.

Architecture section:;
Z0 —=Architecture body
21

22 HALRCHITECTURE dataflow ©OF labl vhdl I3
23 EEBEGIN

24

25 —— Implement function F = AF + AL'E C' 4+ EC

26 F <= (4 AND B) OR { NOT A4 AND B AND WOT C) OFR (B AND C):
27

28 END dataflow

29

Notice that strange symbol: a less than sign, followed by an equal sign, with no space in between: <=. That
symbol is the assignment operator. So, the statement

F <= (AAND B) OR(NOT A AND B AND NOT C) OR (B AND O);
should be read:
“Compute the value of (AB + A'BC' + BC) and then assign that result to F.”

Other operators that can be used in the architecture section are shown in the table below.

From Pedroni, Circuit Design with VHDL, MIT Press, 2004
6

A complete vhdl file for the example above:

ik
=

q <

WM -1 @ Nk M

ML EE 44 4%% IS

lah1 _vhdl.vhd B8

—=Library declaration

library IEEE: —— VHDL library
use IEEE.=std logic 1164.811: --

—-— Entity declaration

HENTITY lakl wvhdl
=] FPORT

—— Input ports

i, B, C : IN EIT : —-=

I3

—— (Cutput port

F: oUT EBIT —— oan use std lpgic also

END labl whdl :

——Architecture hody

EJARCHITECTURE dataflow OF labl vhdl IS
S EBEGIN

Architecture
—= TImplement function F = AB + L'E C' + EC

F <= (A AND B} OR { NOT A AND B AND NOT C) OR (B AND CJ: name

END dataflow

\

Example (from text)

To ground this in another example, suppose we wanted to implement a full adder using VHDL. Recall the full
adder, which you designed about a year or so ago, had two input bits and a carry-in bit, and produced a sum bit
and a carry-out bit, using the logic below:

The Boolean expre rry-out bitis:

Carry

|
U%

——

.) >—
c - jD* Carry

So, let’s complete the three sections of our VHDL code: The library declarations, the entity section and the
architecture section.

The sum bit can be imple

abs full_adder.vhd
E ML T EE 4%%%% 0T B e | 22

——Library declaration

Sum

library —-— Degclare which VHDL library
use all; —-— and packages to use

—— Entity declaration

o o -1, Mok W

= full adder I3

= PORT

—— Input ports

a, b, cin : H

=R e
[|

=
b

—— Output ports
3, cout:

-
o

=
oy

B o
END full sdder ;

=
o -]

—
L]

-
]

——Architecture body

[N)
[

O ARCHITECTURE dataflow OF Iz
SEEGIN

| S S N]
[y [=

—— Implement the Boolean expression for sum bit
g <=

[
oy

| S AN I G
oo -]

—— Implement the Boolean expression for carry out bit
cout <=

L)
=

LTS I %
L I S

END ;

L)
-
I

Solution:

full_adder_vhd

(¥ T e T B T Ty Y T L Y B

R R R R N
I T B T R . T T T O S O o R R s M T R S P R S

A

——Library declaration

librarvy IEEE; —— Declare which VHDL library
use IEEE.std logic 1164.all; —— and packages to use

—— Entity declaration

EENTITY full adder IS

= BORT |
-— Input ports
a, b, cin : IN 3TD LOGIC ;
-— Cumtput ports
=, cout: OOT STD _LOGIC

) o:
END full adder ;
—-Architecture body

E ARCHITECTURE dataflow OF full adder IS
B EBEGIN

—— Implement the Boolean expression for sum bit
2 <= (a XOR b) XOR cimn ;

—— Implement the Boolean expression for carry out bit
cout <= [a AND cin }) OR [a &ND b) CR ([b &ZND cin)

END dataflow ;

Note again that the architecture section describes how the circuit is supposed to function.

Save your VHDL codein afile named full _adder.vhd.

