
1

VHDL Part I: Code Structure

One important way of representing a digital logic circuit is through the use of a hardware description language.
A hardware description language allows you to describe the desired behavior of your circuit using text, and then
simulate the operation of your circuit.

Although lines in a hardware description language look similar to lines of code written in a programming
language (such as C++ or Java), there is a critical distinction: lines of code in a programming language are
executed line by line sequentially without any reference to a time axis. Hardware description languages, on the
other hand, attempt to model actual circuit operation, which may be very much time dependent. Specifically,
lines of code in VHDL can execute concurrently or sequentially, depending on the scenario (as we will see).
For this reason, we will normally say “Look at this VHDL code” instead of “Look at this VHDL program”.

By looking at simulation results based on our hardware description, we can spot design flaws before
implementing hardware (or even drawing a schematic).

It is important to emphasize again that for all but the simplest designs, you always want to

Simulate a circuit before building it. After verifying your design through simulation, then you build the
physical circuit.

The two major hardware description languages in use today are both IEEE standards:

 Verilog (developed by Gateway, now owned by Cadence Design)
 VHDL (developed by the Department of Defense)

Verilog has the reputation for being somewhat easier to learn. Thus, guess which one we are going to use?

VHDL (welcome to the DoD!)

VHDL stands for Very high-speed integrated circuit Hardware Description Language. The language has a

formal syntax that must be followed.

VHDL code has three main sections:

From Pedroni, Circuit Design with VHDL, MIT Press, 2004

A template for a vhdl file is shown below (not a working file).

2

The library declarations: This section lists the libraries of code that others have already written that you would
like to use in your own code. We will have this section read:

LIBRARY ieee;
USE ieee.std_logic_1164.all;

3

This looks cryptic, but basically it makes available to you a set of code that you can freely use in your own
design. For now, just consider this an opening stamp that you place on your code.

Note the semicolons in the two lines above. They are not optional.

The semicolon indicates the end of a statement.

As we write VHDL, we may want to include comments on our code—basically notes to ourselves that we do
not want to be viewed as part of the intrinsic design. We can add comment to our code by using a double-dash.
For example, the following library declaration will be treated exactly the same as the one above:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
-- This is exciting stuff!

Comments can be placed in the same line as code, such as:

LIBRARY ieee; -- EC262 = Fun Times
USE ieee.std_logic_1164.all;

The entity section: This section specifies the name of our design, and all of its inputs and outputs. What the
design actually does to the inputs to arrive at the output is NOT of interest in this section.

The basic format for the entity section using just input bits and output bits is:

ENTITY entity_name IS
PORT(

input_1, input_2, … , input_n: IN BIT;

output_1, output_2, … , output_m: OUT BIT
);

END entity_name ;

After the word “entity” is the entity name that you pick. Can you pick any name?

Entity names (in fact, all names that you choose to represent items in your code) must begin with a
letter, and then can consist of letters, numbers, or the underscore character.

Example. Which of the following are valid names that I can choose in VHDL?

1. EC262
2. Slippery_fish
3. Project_25
4. Buff_chicks
5. 2bae_surprise_quiz
6. _bae_surprise_quiz
7. bae_surprise_quiz_
8. bae__surprise_quiz
9. disconnect
10. ec262 (if I am already using number 1 above)

1, 2, 3 and 4 are okay.

4

5 is bad: can’t start with a number.

6 is bad: can’t start with an underscore.

7 is bad… did I mention that it can’t end with an underscore

8 is bad… did I mention that it can’t have more than one underscore consecutively

9 is bad… did I mention that there are about 100 words that have special meaning in VHDL and cannot
be used as names for your choosing.

10 is potentially bad… did I mention that VHDL is not case –sensitive, so EC242 and ec242 will refer to
the same thing.

Appendix E in your text lists all the VHDL reserved words.

Between the open and close parenthesis we list all of our inputs and outputs.

Look at the line of code:

input_1, input_2, … , input_n: IN BIT;

Consider this line to be two sections, divided at the colon. Everything to the left of the colon is a list of names,
and everything to the right of the colon describes what those names are to function as. So, if we were to have
the line:

a, b : IN BIT ;

that would mean that my entity is to have two ports named a and b that are to function as input bits.

Note that BIT is a data type. Other data types are listed in the table below.

From Pedroni, Circuit Design with VHDL, MIT Press, 2004

The architecture section: This section tells how the entity that you named above actually carries out what you
intended it to do. How the outputs are derived from the inputs is detailed in this section.

5

The basic format for the architecture section is:

ARCHITECTURE arch_name OF entity_name IS
BEGIN

the statements that define the behavior ;

END arch_name ;

Example

To ground this in an actual example, let’s write VHDL code to implement lab 1. Recall that you designed and
implemented a circuit for the following logic function,

F(A,B,C) = AB + A'BC' + BC

The circuit diagram for this function is:

Library declaration:

Entity section:

6

Note again that the entity section is just a description of the inputs and outputs—the pins of the circuit.

Architecture section:

Notice that strange symbol: a less than sign, followed by an equal sign, with no space in between: <=. That
symbol is the assignment operator. So, the statement

F <= (A AND B) OR (NOT A AND B AND NOT C) OR (B AND C);

should be read:

“Compute the value of (AB + A'BC' + BC) and then assign that result to F.”

Other operators that can be used in the architecture section are shown in the table below.

From Pedroni, Circuit Design with VHDL, MIT Press, 2004

Note: syntax for ;

7

A complete vhdl file for the example above:

Example (from text)

To ground this in another example, suppose we wanted to implement a full adder using VHDL. Recall the full
adder, which you designed about a year or so ago, had two input bits and a carry-in bit, and produced a sum bit
and a carry-out bit, using the logic below:

The Boolean expression for the carry-out bit is AC AB BC  and the logic circuit for the carry-out bit is:

A

B

C

Carry

Entity name

Architecture

name

8

The sum bit can be implemented by two XORs.

A

B

Carry

Sum

C

So, let’s complete the three sections of our VHDL code: The library declarations, the entity section and the
architecture section.

Solution:

9

Note again that the architecture section describes how the circuit is supposed to function.

Save your VHDL code in a file named full_adder.vhd.

