
1

VHDL Part III

Sequential Code

We mentioned before that VHDL code is inherently concurrent—all statements can be thought to execute at the
same time. Specifically, for concurrent code, statements do not execute sequentially, one after the other.

Sometimes, though, it is important to have statements execute in sequence, one after another. This is the case
for sequential circuits, where we want things to happen only after, say, the trailing edge of a clock, or only after
the a flip-flop’s input has changed. VHDL allows us to force statements to execute one after another by placing
the statements inside a PROCESS.

So, in VHDL, a PROCESS is a group of statements that execute sequentially. A PROCESS and its statements
thus comprise sequential code. This group of sequential statements will be placed between the reserved word
PROCESS and the statement END PROCESS.

PROCESS …
BEGIN

sequential statements that will execute…well…sequentially!

END PROCESS;

The process itself is located within the ARCHITECTURE section of VHDL code.

So, if the statements inside a PROCESS do not run concurrently, when do they run? What will trigger the
statements inside a PROCESS to start their sequential execution?

After the keyword PROCESS, we place a list of signals that will trigger the process. Any change in one of these
signals will cause the process to run. This list is called the sensitivity list.

Example: PROCESS (a , b , clk) -- sensitivity list
BEGIN

sequential statements

END PROCESS;

Now, any change in a, b, or clk will cause the process to run.

In the example above, suppose the process is triggered, and within the process we would like to know which of
the signals (a, b, or clk) actually caused the process to trigger. How can we determine this?

For signals, we can detect if a signal has just changed its value by looking at the ’EVENT attribute. If the signal
b just changes, then b’EVENT will have the value true.

Sometimes, we may want to use variables within a process to hold temporary or intermediate results. We can
declare variables within a process by using the VHDL reserved word VARIABLE. We can also assign initial
values to such variables by using the assignment operator := .

Example: PROCESS (a , b , clk)

VARIABLE a: INTEGER RANGE 0 TO 7;
VARIABLE b: STD_LOGIC_VECTOR(2 DOWNTO 0) := “101” ;

BEGIN
sequential statements

END PROCESS;

So, all we need to talk about are those “sequential statements”. The three main sequential statements allowed
within a process are: IF, LOOP and CASE.

2

It is important to note that these three statements are only allowed inside a PROCESS. Using any of these three
statements within concurrent code will cause an error.

The IF Statement The syntax for the IF statement is:

IF (conditions) THEN
assignments;

ELSIF (conditions) THEN
assignments;

ELSE
assignments;

END IF;

Example:
IF (x < y) THEN

temp := “00001111” ; --temp is an 8-bit variable

ELSIF (x = y AND w = ‘0’) THEN

temp := “11110000”;

ELSE

temp := “00000000” ;

END IF;

The IF statement checks the conditions in sequence, one-by-one. As soon as a set of conditions are met, the
appropriate assignments are made and the IF statement exits. In the above example, the first condition that is
checked is

x < y

If this is indeed the case (say x = 2 and y = 3), then temp is assigned the value

00001111

and we exit the IF statement altogether, without checking the next set of conditions x = y AND w = ‘0’.

Example Write a process to implement a positive-edge triggered D flip flop that also has an asynchronous
active-high reset input. Assume that the entity which declares the flip flop is:

ENTITY dflipflop IS
PORT(

d1, clk, rst : IN STD_LOGIC;
q1 : OUT STD_LOGIC

END ENTITY;

PROCESS (clk , rst)

BEGIN
IF (rst = ‘1’) THEN

q1 <= ‘0’ ;

ELSIF (clk’EVENT AND clk = ‘1’) THEN

q1 <= D1;

END IF;
END PROCESS;

This section may be repeated any number of times

3

Example Write a vhdl file to implement a 0-to-9-counter that counts:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, …

We would like the counter to be positive-edge clock controlled.

Simulation:

Note that the values of a process’s variables are remembered by the process. So, when a process is called a
second time, the values of its variables will be the same as when that process last ended.

Also, note that a process will update a signal only once and only when the process ends.

What would happen if we ended the process above with the three lines of code:
...
count <= temp - 1 ;
count <= temp + 1;

4

count <= temp ;
END PROCESS;

Only the last assignment would be effective.

Question: Is a VARIABLE within a PROCESS updated immediately or only when the PROCESS ends?

Immediately. In the line temp := temp + 1 ; the variable temp is updated immediately and
this new updated value of temp is used in the next statement IF (temp = 10)...

Notes about VARIABLEs and SIGNALs:
 A SIGNAL can be passed between PROCESSES.
 A VARIABLE can never be passed out of the PROCESS directly. If necessary, it must be assigned to a

SIGNAL; the SIGNAL is then can be passed to other PROCESSES.
 Assignment operator for a SIGNAL is “<=”. For example, sig <= 4;
 Assignment operator for a VARIABLE is “:=”. For example, var := 4;
 An example to show the difference between signals and variables is shown below.

5

Simulation:

Brief detour: We mentioned earlier that the concatenation operation & is sometimes useful when operating on
bit vectors. For example:

SIGNAL y : STD_LOGIC_VECTOR(3 DOWNTO 0)
SIGNAL x : STD_LOGIC := ‘1’;

What is the result of the statement

y <= x & “101”;

y has the value “1101”
What is the result of the statement

y <= ‘0’ & “10” & x ;

y has the value “0101”
Assuming y has the value from the prior example, what is the result of the statement

y <= ‘0’ & y(2) & x & ‘0’ ;

y has the value “0110”

Example Design the shift register below using VHDL:

Signal:
temp_A <= temp_A + 2;
temp_A <= temp_A + 3;

Only the last statement is effective

Variable:
temp_B := temp_B + 2;
temp_B := temp_B + 3;

variable temp_B is updated immediately and the new
value is used in the next statement.

6

Simulation:

The LOOP Statement The LOOP statement is similar to the GENERATE statement in that it allows us to repeat

a statement a number of times. The syntax for the LOOP statement is:

FOR identifier IN range LOOP

sequential statements;

END LOOP;

An example of a FOR loop might be:
FOR i IN 0 TO 10 LOOP

x(i) <= a(i) XOR b(i) ;

7

y(i) <= NOT a(i) ;

END LOOP;

How many times will the LOOP above iterate?

11 (from 0 to 10 inclusive)

Example Remember the 4-bit adder you designed a few years ago back in Lab 2? It was comprised of four full
adders in cascade:

Write sequential VHDL to implement this four-bit adder. Assume numbers are unsigned. The following
ENTITY is given:

8

Simulation:

The CASE Statement The CASE statement plays a role in sequential code similar to that played by the WITH-

SELECT-WHEN statement in concurrent code. The syntax for the CASE statement is:

CASE expression IS
WHEN value1 => assignments;
WHEN value2 => assignments;
...

END CASE;

Example (from text) On page 3 you designed a 0-to-9 counter. We would like the output of this counter to drive
a 7-segment display (ssd). Design a circuit that will accept a 4-bit output from the counter and convert it to a 7-
bit signal to drive the ssd. The clock which drives the counter operates at 50 MHz, but we would like the
counter to remain in each state for one second.

9

Simulation:

Timing diagram when fclk = 5 instead of 50000000

