VHDL Part |11

Sequential Code

We mentioned before that VHDL code is inherently concurrent—all statements can be thought to execute at the
sametime. Specifically, for concurrent code, statements do not execute sequentially, one after the other.

Sometimes, though, it is important to have statements execute in sequence, one after another. This is the case
for sequentia circuits, where we want things to happen only after, say, the trailing edge of a clock, or only after
the aflip-flop’s input has changed. VHDL allows usto force statements to execute one after another by placing
the statements inside a PROCESS.

So, in VHDL, a PROCESS is a group of statements that execute sequentially. A PROCESS and its statements
thus comprise sequential code. This group of sequential statements will be placed between the reserved word
PROCESS and the statement END PROCESS.

PROCESS ...
BEG N
sequential statements that will execute.. well...sequentially!

END PROCESS;
The process itself is located within the ARCHI TECTURE section of VHDL code.

So, if the statements inside a PROCESS do not run concurrently, when do they run? What will trigger the
statements inside a PROCESS to start their sequential execution?

After the keyword PROCESS, we place alist of signals that will trigger the process. Any change in one of these
signaswill cause the processto run. Thislist is called the sensitivity list.

Example: PROCESS (a, b, clk) -- sensitivity list
BEG N
sequential statements
END PROCESS;

Now, any changein a, b, or clk will cause the processto run.

In the example above, suppose the process is triggered, and within the process we would like to know which of
the signals (a, b, or clk) actually caused the process to trigger. How can we determine this?

For signals, we can detect if asignal hasjust changed its value by looking at the’ EVENT attribute. If the signal
b just changes, then b’ EVENT will have the value true.

Sometimes, we may want to use variables within a process to hold temporary or intermediate results. We can
declare variables within a process by using the VHDL reserved word VARI ABLE. We can aso assign initid
values to such variables by using the assignment operator : = .

Example: PROCESS (a, b, clk)

VARI ABLE a: | NTEGER RANGE 0 TO 7;
VARI ABLE b: STD LOGd C VECTOR(2 DOWNTO 0) := “101”" ;
BEG N
sequential statements
END PROCESS;

o, al we need to talk about are those “sequential statements’. The three main sequential statements allowed
within aprocess are: | F, LOOP and CASE.
1

It isimportant to note that these three statements are only allowed inside a PROCESS. Using any of these three
staterments within concurrent code will cause an error.

Thel F Statement The syntax for the |F statement is:

| F (conditions) THEN
assignments,

ELSI F (conditions) THEN
assignments,

} This section may be repeated any number of times

ELSE
assignments,
END | F;

Example:
IF (x <y) THEN

tenmp := “00001111" ; --tenp is an 8-bit variable
ELSIF (x =y ANDw = ‘0") THEN
tenp := “11110000";
ELSE
temp : = “00000000" ;
END | F;
The | F statement checks the conditions in sequence, one-by-one. As soon as a set of conditions are met, the
appropriate assignments are made and the | F statement exits. In the above example, the first condition that is

checked is
X <y

If thisisindeed the case (say x =2 andy = 3), then temp is assigned the value
00001111
and we exit the | F statement altogether, without checking the next set of conditions x = y AND w = ‘0’ .

Example Write a process to implement a positive-edge triggered D flip flop that also has an asynchronous
active-high reset input. Assume that the entity which declarestheflip flopis:

ENTITY dflipflop IS

PORT(
dl, clk, rst : IN STD_LOG C;
ql : QUT STD LCd C
END ENTI TY;
PROCESS (clk , rst)
BEG N
IF (rst =1) THEN
ql <: lOl ;
ELSIF (clk’ EVENT AND clk = “1") THEN
ql <= D1,
END | F;
END PROCESS;

Example Write avhdl file to implement a 0-to-9-counter that counts:
0,123,4,56,7,8,90,123, ...
We would like the counter to be positive-edge clock controlled.

1

2 —-— O-to-S9-counter

3

4 LIBERALRY IEEE:

5 USE IEEE.3TD LOGIC 1164.ALL:

]

7 [HENTITY counter 09 I3

=] = PORT

= clk : IN 3TD _LOGIC:

10 count : OUT INTEGER RANGE O To 9
11 1

12 END ENTITY:

13

14 EARCHITECTURE counter oOF counter 09 I3
15 HEEGIN

16 |

17 = PREOZEZS [clk)

15 WALRTAELE temp : INTEGER RAMNGE O to 10:
19

20 BESIN

21 = IF | clk'EVENT ALND clk = '1') THEN
22 tewmp := temp + 1 :

23

24 = IF | temp = 10) THEN

25 temp := 0O;

26 END IF:

27 o

25 END IF:

29 o

30 count <= tewmp ;

31 END PROCEZS:

iz -

33 END ALRCHITECTURE:

Si mul ati on:

Mame Yalle at i ! 1 1 1 1 | 1

Ops 0ps
Bk BO
P Eocomt U0 o 1 ¥z W s ¥ e Ws N e ¥ s We ¥ oW ¥ s ¥ 4 sk

Note that the values of a process's variables are remembered by the process. So, when a process is called a
second time, the values of its variables will be the same as when that process |l ast ended.

Also, note that a process will update asignal only once and only when the process ends.
What would happen if we ended the process above with the three lines of code:

count <= tenp - 1 ;
count <= tenp + 1;

count <= tenp ;
END PROCCESS;

Only the last assignment would be effective.

Question: IsaVVARI ABLE within a PROCESS updated immediately or only when the PROCESS ends?

Immediately. Intheline tenp := tenp + 1 ; thevariablet enp isupdated immediately and
this new updated value of t enp isused inthe next statement I1F (tenp = 10)...

Notes about VARIABLEs and SIGNALS:

o -1 m o LM

A SIGNAL can be passed between PROCESSES.

A VARIABLE can never be passed out of the PROCESS directly. If necessary, it must be assigned to a
SIGNAL,; the SIGNAL isthen can be passed to other PROCESSES.

Assignment operator for a SIGNAL is“<=". For example, sig <= 4,

Assignment operator for aVARIABLE is®:=". For example, var := 4,

An example to show the difference between signals and variables is shown below.

—-— variable wv= signal
LIERLEY IEEE:
U3E TEEE.3TD LOGIC 1164.ALL:

use IEEE.3TD LOGIC UMN3IIGNED.ALL: -- for +, - Operators
HENTITY war sig I3
= PORT(
clock , reset : IM STD _LOGIC:
L out, B out : OUT STD _LOGIC VECTOR (3 downto 0O)

1
EMNDI» ENTITY:
EJARCHITECTURE arch oOF var sig I3
L —————————————————— SIGMNAL DECLARATION ——————————————————————— —-
SIGHAL tewmp A : STD_LOGIC _WECTOR (3 DOWNTO 0O):
HEEGIN
= PROCESS [(reset, clock)
—————————————————— VARILELE DECLARATION —-——————————————————————-

VARIABLE temp B i S3TD_LOGIC VECTOR (3 DOWHTO O):
BEGIN
= IF | reset = '1') THEN
temp A <= [(OTHERZ => '0O')
o tewmp B := ([OTHERZ => '0')
= EL3IF | clock'EVENT AND clock = '1' | THEN
temp A <= temp L + Z;
tewmp L <= temp AL + 3
temp B = temp B + 2
temp B := tewmp B + 3
o END IF:

—-— Az=sign outputs
L out <= temp A4;
B out <= temp B:
o END PROCEZS:
END ARCHITECTURE:

Si mul ati on:

Yalue at |D ps SD.P ns 1I5|:|.||:| ns 24|:|.I|:| ns 32|:|.I|:| ns 4|:||:|.I|:| ns 48I:|.|I:| ns
Marne 0 ps Ops
dock |BC R EEE FR SRS R EEE R SuE R SRS R SN R
resek B1 _|
+- 4 _ouk HO 0 K 3)(& * g X C X F * - * g
H Bt HO 0 /2(s X & ¥ F ¥ 4 ¥ 9« ¥ e ¥ =

™~

Signal: Variable:

temp_A<=temp_A+2; temp_B :=temp_B +2;

temp_A<=temp_A+3; temp_B :=temp_B + 3;

Only the last statement is effective variable temp_B is updated immediately and the new
value is used in the next statement.

Brief detour: We mentioned earlier that the concatenation operation & is sometimes useful when operating on
bit vectors. For example:

SIGNAL vy : STD LOG C VECTOR(3 DOANTO 0)
SI GNAL x : STIDLOEC = “1";
What is the result of the statement
y <= x & “101";
y hasthe value “1101”
What is the result of the statement
y <='0 & "“10" & x ;
y hasthe value “0101”
Assuming y has the value from the prior example, what is the result of the statement
y <='0 &vy(2) &x &0 ;
y hasthe value “0110”

Example Design the shift register below using VHDL.:

din dout
—» D Q » D Q » D Q » D Q——
I~ rst [~ rst = rst — rst
wl L T 1 T]
rst

o m -1 o 0 b WM

T e e e e = N S ST
0 -1 m N b WO

19
20
21
22
23
24
25
26
27
25
29

E-- W-hit shift register (right shift)
L—— zerial in, serial out shift register

LIERARY IEEE:
O3E IEEE.3TD LOGIC 1164.ALL;

EENTITY shift_register N I3
| GEMERTIC [M : INTEGER := 4):

EHFORT|
din, clk, rst : IM STD_LOGIC:
dout : OUT STD_LOGIC

1:
END shift register N:

EARCHITECTURE arch OF shift _register N I3

ElEEGIN
= PEOCESS [rast , clk)

VARIAELE g : &TD _LOGIC VECTOR(N-1 DOUNTO O); -- internal register

BEEGIN
= IF { rst = '1' | THEHN
F oq := (OTHERS => '0'):
= EL3IF | clk'EVENT AND clk = '1' | THEN —— leading edge

g := din & g N-1 DOWNTD 1) :
END IF:

dout <= (0]
END PROCEZS:
END arch;

Si mul ati on:

clk
rsk

din

dout

Bo LT L L L
B1]

B1

E 0000 oooo 1000 ¥ 1100 % 1110) 1111

ED |

The LOOP Statement The LOOP statement is similar to the GENERATE statement in that it allows us to repeat

a statement a number of times. The syntax for the LOOP statement is:

FOR identifier IN range LOCP
sequenti al statenents;
END LOOP;

An example of a FOR loop might be:

FOR i INO TO 10 LOOP
(i) <= a(i) XORb(i) ;

6

y(i) <= NOTa(Ci) ;
END LOOP;

How many times will the LOOP above iterate?
11 (from0to 10 inclusive)

Example Remember the 4-bit adder you designed a few years ago back in Lab 2? It was comprised of four full
addersin cascade:

s0 51 52 53
°n A ST Fa |22 JFa |2 L[Fa cout
a0 b0 al bl a2 b2 a3 b3

Write sequential VHDL to implement this four-bit adder. Assume numbers are unsigned. The following
ENTITY isgiven:

1

2 —— N-hit ripple adder

3

4 LIERARY IEEE:

5 U3E IEEE.3TD LOGIC 1164.ALL;

&

7 EHENTITY ripple adder I I3

g | GEMERIC [N : INTEGER := 4 |

= = PORT

10 a, b IN 3TDh LoOGIC VECTOR(N-1 DOWNTO O j:
11 cin : IN 3TD_LOGIC:

1z = i OUT 3TD_LOGIC WVECTOR(N-1 DOWNTOD O g ;
13 cout @ OUT 3TD LoGIC

14 = 1:

15 END ripple adder N;

1l =

17 EARCHITECTURE structure OF ripple adder N I3
15 EEEGIN
19 = PROZESS [a , b , cin)

20 WARTABLE ¢ : BSTD_LOGIC VECTOR{ N DOWWTO O
21

22 BESIN

23 ci0) = oing

24 = FOR i IN O To N-1 LoOOP

25 sli) <= a(i) XOE bi(i) XOE cii) ;

26 cli+l) = f{(ali) AND bi{i})) OR (a(i) AND cii))
27 OFR (bi{i) AWND oi(i)):

28 END LoOP;

29 o

30 cout <= o (M)

31 o END PROCEZS;

32 END structure;

33 =

Si nul ati on:

Mame

cin

cout

walue at 1 1 1 1 1 1 ! 1 1
Ops

uo 3 b 4 Y 5 Y &) 4 7 b 8 Y 3 Y m % n)4
uo z b 3 b4 4 4 5 b 6 Y 7)4
BO |

5O [|

uo BEEED: ¢SS SEE:SEEEES 15 4 T 4 SN i S

The CASE Statement The CASE statement plays arole in sequential code similar to that played by the W TH-

SELECT- WHEN statement in concurrent code. The syntax for the CASE statement is:

CASE expression IS

WHEN val uel => assi gnnents;
WHEN val ue2 => assi gnnents;

END CASE:

Example (from text) On page 3 you designed a 0-to-9 counter. We would like the output of this counter to drive
a 7-segment display (ssd). Design a circuit that will accept a 4-bit output from the counter and convert it to a 7-
bit signal to drive the ssd. The clock which drives the counter operates at 50 MHz, but we would like the
counter to remain in each state for one second.

0o o -1 o Nk

L e e el e e e e =
Mo O W00 -] o e D O

23

E-- =low counter
—— The clock which driwves the counter operates at 50 MH=,
-— but we would like the counter to remain in sach state for one second.
—-— 2353D: =zeven segment display

LIERARY IEEE:
U3E IEEE.3TD LoGIC 1164.ALL:

BIENTITY slow counter IS

| GENERIC|[fclk @ INTEGER := 500000007 ;
= FORT (
olk , rat o IN STD _LOGIC:
s=d . QuT STD _LOGIC WECTOR(& DOWNTC 0O)

1
END ENTITY:

EARCHITECTURE counter OF =low counter I3
T —

SBEGIN

B PROCESS(clk , rst)
VARIAELE counterl : INTEGER RANGE 0O TO felk := 0;
VARIAELE counterz : INTEGER RANGE 0 To 10 := 0O;

24

25 BESIN

26 = IF | r=st = '1' | THEHN

27 counterl = 0O;

28 - counter: = 0;

29 = EL3IF | eclk'EVENT ALND clk = '1' | THEN
30 counterl = counterl + 1;

31

32 =l IF | counterl = foclk) THEN

33 counterl = 0O;

34 counter:s = counter:s 4+ 1;

35 =l IF | counterZ = 10) THEN

36 counter? = 0O;

37 o END IF:

38 o END IF:

39 END IF:

40 o

41 =l —-— Cconvert counter to patterns for a 33D
4z | -— active low 33D

43 = CASE counterz I3

44 WHEN O =3 ssd <= "O000ooo1t;
45 WHEN 1 => ssd <= "1001111";
46 WHEN 2 =3> ssd <= "O010010%;
47 WHEN 3 =3> ssd <= "O0000110%;
45 WHEN 4 =3 ssd <= "10011i00%;
49 WHEN &5 =3 ssd <= "0100100%;
50 WHEN & =3> ssd <= "O0100000%;
51 WHEN 7 =3> ssd <= "O0O01111°";
52 WHEN & =& ssd <= "ooooooor;
53 WHEN 9 =3 ssd <= "O0000100%;
54 WHEN OTHERZ =3 s=sd <= "O0110000%;
55 END CA3E:

56 o

57 o END PROCEZS:

58 END ARCHITECTURE:

Si mul ati on:

Timing diagram when fclk = 5 instead of 50000000

vauc au

Ops 0ps

clk BO
rst B1

ame

#counterl LD o W We s W o W Wz Wos e W W Wz s Wa w0 W W=
+-counterz U0 a X 1 X 2 X 3
+ ssd E 0000001 000001) 1001111 ¥ 0010010) 0000110

