
1

VHDL Part II

Representing Values in VHDL

Representing Decimal (Base-10) Values in VHDL

Integers are represented in the usual way. For instance, the integer fifty seven is represented by:

57

and the integer negative five is represented by

-5

We can also use exponential notation if desired. For instance, the number 7000 can be represented as

7E3

Question: Could 7000 be represented by 7e3?

Yes, VHDL is not case sensitive.

Representing Bits in VHDL

A bit is surrounded by single quotes, with the two options being ‘0’ and ‘1’

Representing Multi-Bit Quantities in VHDL

Multi-bit quantities are surrounded by double quotes. A collection of bits is called a bit vector. For example, in
VHDL, the term “011010” is

26

while the term 011010 would represent

eleven thousand and ten

Representing Hexadecimal Quantities in VHDL

To represent a hexadecimal quantity, place the number in quotes and precede it with an X. For example, the
term X”1F” would represent the decimal value of

31

Using VHDL, how would you represent the base-10 number 14 in hexadecimal.

X“E”

VHDL Standard Data Types

When we want to use a signal x (an input to a circuit) or when we want to use a variable x, we have to tell
VHDL what the signal or variable is.

Is x a single bit?
Or is x a group of two bits (to be applied as the control signals for a 2-4 multiplexer)?
Or is x a group of four bits (to be applied as the input to a 4-16 decoder)?

2

The point: We have to tell VHDL what x is supposed to be.

Put another way, we have to tell VHDL x’s type.

The STD_LOGIC (or BIT) type A signal of this type will be just a bit, which can take on the values of 0
or 1. Examples:

a , b: IN STD_LOGIC;
x : OUT STD_LOGIC_VECTOR;

What operations can we perform on bits?

NOT, AND, OR
NAND, NOR, XOR
assignment (<=)
Comparison: = , /= , > , <

Examples (using a, b and x from above):

Write a VHDL statement that assigns a the value of 1.

a <= ‘1’ ;

Write a VHDL statement that assigns b a value equal to the negation of a.

b <= NOT a ;

The STD_LOGIC_VECTOR (or BIT_VECTOR) type This is a vector, or a collection, of bits. Examples:

d_out : OUT BIT_VECTOR (7 DOWNTO 0) ;

e_in , x_in : IN STD_LOGIC_VECTOR (7 DOWNTO 0) ;

In the above statements, d_out , e_in and x_in are all eight-bit quantities.
What operations can we perform on bit vectors?

NOT, AND, OR
NAND, NOR, XOR
assignment (<=)
Comparison: = , /= , > , <
Shifting operations:

SLL (shift left filling in a 0 on the right)
SRL (shift right filling in a 0 on the left)
SLA (shift left replicating the right-most bit)
SRL (shift right filling replicating the left-most bit)
ROL (circular shift to the left)
ROR (circular shift to the right)

Concatenation: &

Example: Using d_out , e_in and x_in from above)

Assign e_in the value 11000001

e_in <= “11000001” ;

Assign d_out the value of the exclusive-or of e_in and x_in

d_out <= e_in XOR x_in ;

Example We can select individual bits from a vector by using parenthesis. For example, a multiplexer with four
inputs (x0, x1, x2, x3) and a two-bit selector can be implemented as follows:

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux IS

PORT(
x0, x1 , x2, x3 :
sel : IN STD_LOGIC
y : OUT STD_LOGIC

);
END mux;

ARCHITECTURE mux_operation OF mux IS
BEGIN

Y <= (NOT sel(1) AND NOT sel(0) AND x0)

OR

(NOT sel(1) AND sel(0) AND x1)

OR

(sel(1) AND NOT sel(0) AND x2)

OR

(sel(1) AND sel(0) AND x3)

END mux_operation;

The INTEGER type A signal of this type will be an

a, b : IN INTEGER RANGE
c : IN INTEGER RANGE
d : OUT INTEGER RANGE

How many bits are used to represent the ports a, b,, c and d above?

What operations can we perform on integers?

Comparison: = , /= , > , <
Arithmetic: +, -, *, /, **

Example The inputs to the circuit shown below are two values
between 0 and 7 (inclusive). The output
implement this circuit.

3

We can select individual bits from a vector by using parenthesis. For example, a multiplexer with four
bit selector can be implemented as follows:

USE ieee.std_logic_1164.all ;
--

x0, x1 , x2, x3 : IN STD_LOGIC ;
STD_LOGIC_VECTOR (1 DOWNTO 0);
STD_LOGIC

ARCHITECTURE mux_operation OF mux IS

= (NOT sel(1) AND NOT sel(0) AND x0)

(NOT sel(1) AND sel(0) AND x1)

(sel(1) AND NOT sel(0) AND x2)

(sel(1) AND sel(0) AND x3)

A signal of this type will be an integer. Examples:

IN INTEGER RANGE 0 TO 15 ;
IN INTEGER RANGE -31 TO 31 ;

INTEGER RANGE 0 TO 31 ;

How many bits are used to represent the ports a, b,, c and d above?

4, 4, 6 and 5, respectively

we perform on integers?

The inputs to the circuit shown below are two values a and b that each may take on any integer
between 0 and 7 (inclusive). The output sum should be the addition of a and

We can select individual bits from a vector by using parenthesis. For example, a multiplexer with four

that each may take on any integer
and b. Write VHDL code to

4

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
--

ENTITY my_circuit IS
PORT(

a, b : IN INTEGER RANGE 0 TO 7 ;
sum : OUT INTEGER RANGE 0 TO 15

);
END my_circuit;

ARCHITECTURE circuit OF my_circuit IS
BEGIN

sum <= a + b ;
END circuit;

Signed and Unsigned Types

Type Value Range Notes
UNSIGNED 0 to 2N-1
UNSIGNED -2N-1 to 2N-1-1 2’s complement number

Example:
SIGNAL a: UNSIGNED (3 downto 0); -- a 4-bit unsigned number
SIGNAL b: SIGNED (3 downto 0); -- a 4-bit signed number
SIGNAL c: STD_LOGIC_VECTOR (3 downto 0);-- a 4-bit unsigned number

a <= “1111”; -- 15 in decimal
b <= “1111”; -- -1 in decimal
A <= “1111”; -- 15 in decimal

We can declare values to be unsigned or signed. Signed numbers use the normal two’s complement notation.
For signed numbers, we must include the library ieee.numeric_std.all or ieee.std_logic_arith.all, but
not both.

Example: The program below implements a multiplier. If the decimal value of a is 13 and the decimal value of
b is 2, what will be the value of y (as 8 bits) after this section of code executes?

5

(13)(2) = 26, so y will be 00011010

If the decimal value of a is -3 and the decimal value of b is 2, what will be the value of y (as 8 bits) after this
section of code executes?

6

Now a has the value of -3. So y will have the value of -6.
In eight bits, -6 is 11111010

7

Concurrent or Dataflow Code

VHDL is inherently concurrent. This means that the lines of code can be viewed as all being executed at the
same time. If we want VHDL to NOT execute all lines at the same time—i.e., if we want VHDL to execute
lines of code sequentially, one after another—we have to specifically inform VHDL of this intent.

Concurrent code is also called dataflow code.

We have seen several examples of concurrent code that implements Boolean or arithmetic equations.

Other fundamental types of statements that can be used in concurrent code are:
 Conditional signal assignments using WHEN/ELSE statements.
 Selected signal assignments using WITH/SELECT/WHEN statements.
 Structured assignments using GENERATE statements.

WHEN/ELSE statement

Syntax:

The conditions in a WHEN/ELSE statement are prioritized. The first output statement listed has the highest
priority and will be executed first, if the condition is true. If the first condition is not true, the second output
statement will be executed next, and so on.

Example: Implement a 4-to-1 mux using a WHEN/ELSE statement.

LIBRARY section:

ENTITY section:

8

ARCHITECTURE section:

Note that if we use type BIT_VECTOR to combine S1 and S0 into one signal of 2 bits, we can write the VHDL
code as:

9

WITH/SELECT/WHEN statement

Syntax:

The selected signal assignment (WITH/SELECT/WHEN) examines the value of the expression and executes
only the assignment statement that matches the WHEN value, and all other statements are skipped.

WHEN OTHERS is required to terminate a WITH/SELECT/WHEN statement. This is used to ensure that all
possible choices of the expression are considered.

BIT_VECTOR type

Commas are used in a

WITH/SELECT/WHEN

statement

when other s must be used to terminate

a WITH/SELECT/WHEN statement

10

Note the syntax for commas in a WITH/SELECT/WHEN statement.

Example: Implement a 4-to-1 mux using a WITH/SELECT/WHEN statement.

LIBRARY section:

ENTITY section:

ARCHITECTURE section:

One important keyword, UNAFFECTED, that is often used to indicate no action is to take place for some
conditions. For example, let’s look at VHDL code for a 3-to-1 mux (output is assigned to one of 3 inputs).

11

Example: For the following function,
f = (ab' + c' d')'

Write VHDL code using
a. Boolean expression.
b WHEN/ELSE statement.
c. WITH/SELECT/WHEN statement.

a. VHDL using a Boolean expression:

12

b. VHDL using a WHEN/ELSE expression: (same LIBRARY and ENTITY sections)

c. VHDL using a WITH/SELECT/WHEN expression: (same LIBRARY and ENTITY sections)

13

GENERATE statement

GENERATE statement is another important concurrent statement that can be used to reduce number of lines of
code for structured circuits such as iterative systems. By employing GENERATE statement, a section of code
can be repeated for a number of times. A GENERATE statement has two modes:

1. Unconditional GENERATE (FOR/GENERATE)
2. Conditional GENERATE (IF/GENERATE).

Syntax for unconditional GENERATE statement (FOR/GENERATE):

Syntax for conditional GENERATE statement (IF/GENERATE):

Notes:
 A label is required for a GENERATE statement.
 IF/GENERATE is used within a FOR/GENERATE loop.
 loop_id is generally of type INTEGER.

Example: Implement the following circuit using GENERATE statements.

14

Solution:

15

Example: If the two NOR operations are replaced by two OR operations, we can modify the ARCHITECTURE

section to use one unconditional GENERATE statement as:

Example: Implement a 2-to-4 decoder using

a. WHEN/ELSE statement.
b. WITH/SELECT/WHEN statement.
c. GENERATE statement.

Solutions:
a. WHEN/ELSE statement.

16

b. WITH/SELECT/WHEN statement (same LIBRARY and ENTITY sections).

c. GENERATE statement.

Note: type INTEGER

17

Example. Consider the circuit below which shows a simple computer Arithmetic Logic Unit (ALU). The
inputs are a and b, and the output is y. Note that a, b and y are each one byte.

From Pedroni, Circuit Design and Simulation with VHDL, MIT Press, 2010

The 4-bit opcode input decides what the ALU does. For example, if the opcode is 0011, the output is the OR-
ing of a and b. The additional input to the ALU, cin, is used only in the addition operation.

Write VHDL code to implement the ALU using WITH/SELECT/WHEN statements. Assume that all
arithmetic is unsigned.

Library:

Entity:

Architecture:

18

