
1

VHDL Part IV

STRUCTURAL CODE

Structural code is a design style that often referred to as a hierarchal design approach. The general idea is to
partition the design into smaller, easier to verify logic/arithmetic blocks and then connect them structurally to
create a top level design. Specific procedures are:

1. Partition the design into smaller hardware blocks called components.
2. Write VHDL code to define each component using concurrent or sequential code. Verify the

functionality of each component.
3. Declare all components in a top-level VHDL file. Component declaration section should be between

ARCHITECTURE statement and the first BEGIN statement. The syntax is:

4. Instantiate the components in the top-level VHDL file. Component declaration section should be after
the first BEGIN statement. The syntax is:

Note that an annotated circuit/schematic needs to be provided in order to write structural VHDL code
effectively. All inputs, internal signals, outputs should be clearly labeled.

2

Example: Implement the following circuit using structural VHDL code.

Figure 4. A register with selective input

Input signals:
 clock, load, reset, sel
 A(3:0), B(3:0)

Internal signal
 Mux_out (3:0)

Output signal
 C(3:0)

Notes:
 clock, load, sel and reset are 1-bit signals (wire)
 A(3:0), B(3:0), Mux_out (3:0), and C(3:0) are 4-bit wide buses
 A wire or a bus can be specifically specified in the schematic/circuit using the following annotated style:

Figure 5. Wire and bus schematic

VHDL code:
 Assume that mux and register components have been verified and available.

3

4

Notes:
 There are two ways of mapping signals when instantiating components:

o Name association : using signal names when mapping signals
o Positional association : the actual signals must be placed exactly the same order as they are listed

in the component declarations.
 Name association is highly recommended.
 Connections between components require internal signals.

Question: What needs to be changed to support 8-bit data (A, B, and C are 8-bit values)?

Assign the generic parameter N = 8.

Line 9 should be:

GENERIC(N : INTEGER := 8);

Do not have to modify anything in components mux_N and reg_N

Connection

5

VHDL code of mux_N component (mux_N.vhd):

VHDL code of reg_N component (reg_N.vhd):

6

Example: Implement a simple processor shown in the Figure 6 using structural VHDL code.

Figure 6. A simple processor

Input signals:
 clock, load, reset, sel, load_A, load_B, cin
 A(3:0), B(3:0), opcode(3:0)

Internal signals:
 MuxA_out (3:0), MuxB_out (3:0), regA_out(3:0), regB_out(3:0), ALU_out (3:0)

Output signals:
 A_out(3:0), B_out (3:0)

VHDL code:
 Assume that mux, register, and ALU components have been verified and available.

7

8

mux_N and reg_N components are the same.

VHDL code of alu_N component (alu_N.vhd):

9

10

FINITE STATE MACHINE (FSM)

Recall that FSM technique is used to model a sequential logic circuit. A sequential logic circuit has three main
parts:

1. Present state of the system
2. Next state logic
3. Output logic

The states of the system are represented by flip flops. Both next state logic and output logic are entirely
combinational logic. A simple block diagram for an FSM is shown in Figure 1 which contains a sequential logic
section (present state logic) and a combinational logic section (next state logic and output logic). Based on this
model, we will introduce a VHDL example that can be used as a template to model an FSM.

Figure 1. State machine diagram

VHDL Template for FSMs:

 Sequential section:
o The function of this section is to assign the next state to the present state at the clock’s edge.
o An asynchronous reset signal is used to initialize the system to the first state (S0 in this

example).
 Combinational section:

o Note that combinational logic is implemented with sequential code (process and case
statements).

o The function of this section is to assign output value and to establish the next state. All outputs
should be specified in each state.

Notes:
 Each section is implemented with a PROCESS.
 Two PROCESSES communicate using signals (pr_state and nx_state in this example).
 Each of these PROCESSES (as a whole) is concurrent. It means that both PROCESSES execute

concurrently.

Example: Implement the following ASM diagram using VHDL.

11

S0

input

0 1

output(0)

output(1)

S1

input
0

output(1)
output(0)

S2

1

input

reset

01

Figure 2. ASM diagram for the example

12

Example: Design a sequential system with one input, x, and a 2-bit output z(1:0). The circuit outputs the
sequence:

1, 2, 3, 1, 2, …. when x = 0
1, 3, 2, 1, 3, …. when x = 1

In addition, the circuit should behave based on the following characteristics:
 Number 1 (012) should be outputted for 1 second.
 Number 2 (102) should be outputted for 2 seconds.
 Number 3 (112) should be outputted for 3 seconds.

13

 One asynchronous, active high reset signal that puts the system in the initial state (number 1).
 The system is operated with a 10 Hz clock signal.

The ASM of the system is shown below (without timing information).

Figure 3. ASM diagram for the example

For timing consideration, we will use a counter to determine the delay periods. The clock frequency is 10 Hz, so
the clock period is 100ms. The relationship between time delay and the corresponding count is summarized in
the table below.

State Delay Count
1 1 second 10
2 2 seconds 20
3 3 seconds 30

The time delay for each state now can be represented by CONSTANTs in VHDL code.

14

15

Timing diagrams:

Another implementation of the same problem which shows how two PROCESSES communicate using

SIGNALS is shown below (same LIBRARY and ENTITY sections).

16

Communication between

two PROCESSES using signals

17

Timing diagrams:

