
EE 242 Lab #8

PRE-LAB

Using VHDL, design and simulate a counter that counts 0 to 9 like the counter you built for the
previous lab (do not include the output z, however). Your counter should include an
asynchronous clear, and produce 4 output bits which are the number in BCD format.

Hint: Look at example 6.7 in Pedroni for ideas, but use the std_logic_vector data type for
your count state. If you include the libraries ieee.std_logic_unsigned.all and
ieee.std_logic_arith.all then you can use the addition operator with std_logic_vector.

LAB

Your goal is now to use your new counter in a new project that incorporates a slower clock
and outputs the digit to the seven segment display.

The general block diagram for the project you will build is shown below (with the details of
the FreqDiv block intentionally missing)

To build this system, you need to create a symbol for your VHDL counter so that you can
incorporate it into the new project (which you will, of course, create in a new folder). You also
need to implement the “FreqDiv” block which will slow the clock down from 25 MHz to ticking
every second. See the instructions that follow under “Slowing down the clock.” You will also
need to use bus lines with this project, as is shown with the thick lines between the “MyCounter”
block and “7447” block in the example above. More information on using bus lines is also
included below.

Once you have it all working on your Altera board, demonstrate it to the instructor.



EE 242 Lab #8

Slowing down the clock

The global clock (pin 83 on your proto board) is around 25 MHz. If you were to use this clock
directly to drive the CLK on the FFs used in the first part or the ‘clk’ signal in theVHDL design,
then the state would change 25 million times per second. So you’ll need to create a frequency
divider. There are many ways to do this. What we’re going to do is feed the system clock into
an intermediate counter that will count from 0 to a really big number (you figure it out). As
this intermediate counter then returns to 0, it will set its carry out to “1”. You can use this
carry-out to then trigger your 0 to 9 counter.

To create the frequency divider, while in a schematic, double-click the background, and this
familiar dialog box appears:

Click on the “MegaWizard Plug-in Manager”. From there, “create a new ... ”. From there, open
up the “arithmetic” area from the menu on the left:

Select the “LPM_COUNTER”, and fill in an output file-name like, ‘freqDiv’ in the associated box.



EE 242 Lab #8

Next you’ll have to answer some questions. You can choose a number of bits, and a number for it
to count to that will cause the last bit (or a carry out) to change state at whatever rate you want.
When you’re finished, Quartus will create your FreqDivider box, which will look something like
the one in the example above.

Using a Bus

Those thicker lines coming out of your VHDL counter and coming out of the FreqDivider block
are buses. They indicate that they contain several signals bundled together. Note that the buses are
named, and that the convention of the [] square brackets indicates bit order. You can drag a bus out
using the Orthogonal Bus Tool (it looks like the regular wire tool, but with a thicker line).
When doing this, you should name the bus (highlight the bus, right click on “properties” and you
can give it a name), typically the same as the name you are dragging it from.

If you want to access one particular line of a bus, to you can pull off individual wires, and name
them according to the wire you want to access. Here is a close up view of the bus portion of the
example:


