EE313 - How to design a state machine using VHDL rev4/17/2012

Example: Lookout Timer — A lookout needs to ensure he/she scans the entire horizon once every 2
minutes. Make a timer that keeps track of the two minutes alerting the user when two minutes is 10
seconds from being over and alarming when 2 minutes is past. The user should have an input allowing
him/her to reset the timer to 0.

Caution: Sections of this document that appear to be VHDL code are close facsimiles. In some cases they may not meet syntax requirements.

Planning
1. Determine the device inputs and outputs
a. Inputs
1) Reset Button — Key 0
2) Start/Restart 2 Minute Timer — Key 1
3) Clock for timers — Clock 50
b. Outputs
1) Time Elapsed in minutes and seconds — 7 Segment Display 4 and 5
(Implementation not shown here)
2) 1 Flashing Light for state ¢
3) 4 Flashing Lights for state d
4) 16 Flashing Lights for state e
2. Determine the states of the device
a. Timer reset to 0 waiting to start.
b. Timer running with less than 110 seconds elapsed.
c. Timer running with between 110 seconds and 2 minutes elapsed.
d. Timer running with between 2 minutes and 2 minutes 5 seconds elapsed.
e. Timer running with greater than 2 minutes 5 seconds elapsed.
3. Determine what will cause the states to transition from one to the next.
a. Press Key 0 to Reset to state a — stop timer and reset to 0.
b. Press Key 1 to switch to state b — start/restart 2 minute timer.
c. 110 seconds after entering state b, enter state ¢ — entered 10 second warning state.
d. 10 seconds after entering state c, enter state d — exceeded 2 minute time limit.
e. 5seconds after entering state d, enter state e — really exceeded 2 minute time limit.
4. Determine the size, type and name of the variable used to keep track of the states.
a. 5 states =>log2(5)=2.2 => 3 bits required to store.
b. Typically just use std_logic_vector.
c. Letus just call it prstate for present state.
d. Endresultis shared variable prstate : std_logic_vector(3 downto 0);
5. Determine timer names. It can be three different timers or just 1 with three different checks.
a. timerl1l0 --a,band c if using 3 separate timers
b. timerl0
c. timer5
d. timer -- If only using 1 timer



Implementation
1. Create a VHDL file
2. Create a Library section.
3. Create an Entity section defining any 1/O ports.
4. Create an Architecture section defining the timers and the state variable in the declaration portion of
the Architecture section.
5. Create a process to control the transitions from one state to another. This process will typically
contain a large if statement setting the state based on the current state and input conditions identified
above. Examples include the following:
IF key(0)="0’ then prstate:=a;
ELSIF key(1)="0" then prstate:=b; timerreset="1’;
ELSIF prstate=b and timer=5500E6 then prstate:=c;timerreset:="1’;
ELSIF prstate=c and timer=500EG6 then prstate:=d; timerreset:="1";
ELSIF prstate=d and timer=250E6 then prstate:=e; timerreset:="1";
. ELSE timerreset:="0’; -- timerreset="1" tells the timer to be reset to 0.
6. Create a process to increment the timer every clock cycle and to set it to zero whenever
timerreset="1".
a. timer:=timer+1;
b. IF timerreset="1" then timer:=0;
7. Create a process to generate the reduced frequency clock necessary to drive the flashing lights.
a. flashtimer:=flashtimer+1,;
b. IF flashtimer > 50E6 then flashtimer:=0; flasher<=not flasher; END IF
8. Create a process to generate the digits of the elapsed time. Each digit should be a 4 bit binary
number.
9. Create a process to assign outputs based on the present state prstate.
a. IF prstate = a then ledr(15 downto 0)<=(others=>’0’);
b. -- ELSIF prstate = b then assign digits of elapsed time.
c. ELSIF prstate = ¢ then ledr(15 downto 1)<= (others=>’0’); ledr(0)<="1";
d. ELSIF prstate = d then ledr(15 downto 4)<= (others=>’0"); ledr(3 downto 0)<="1111";
e. ELSE ledr(15 downto 0)<= (others=>"1’); -- If not in state a,b,c, or d, we must be in e.
10. Instantiate any components that may be needed such as the 7 segment display driver and map the
components inputs and outputs to the appropriate signals of the current entity.
11. Compile and Debug Syntax Errors. You may want to do this at various stages throughout the
creation of the VHDL file.

SO o0 o

Testing

1. Simulate the operation of the circuit by developing an appropriate VVector Waveform file. Simulation
is useful for verifying internal signals are correct. This can help identify the source of a Logic Error by
narrowing down the list of possible suspects.

2. Program your device and verify its proper operation. When possible, testing all possible states and
inputs is desired. This is frequently not possible. In any event, the conditions tested should be written
down so they can be repeated.

Marketing
1. Sell your product to the world and make millions of dollars.
2. Repeat



	EE313 - How to design a state machine using VHDL rev 4/17/2012
	Planning
	Implementation
	Testing
	Marketing


