
1

EE313 VHDL Part I rev 04/08/2012

Code Structure
We have looked primarily at many different ways of representing digital logic circuits:

 Boolean expressions, circuit diagrams

 State Tables/Truth Tables

 State diagrams, ASMs

Long Boolean expressions can be very cumbersome to read and do not necessarily portray the intent of the

designer can be difficult to discern. It is also a challenge to identify the purpose of long truth tables without

detailed analysis. Similarly, circuit diagrams for large circuits provide few clues about the intended operation of

the circuit and have the added problem of being difficult to draw.

Another means of representing a digital logic circuit is through the use of a hardware description language. A

hardware description language allows you to describe the desired behavior of your circuit using text, and then

simulate the operation of your circuit.

Although lines in a hardware description language look similar to lines of code written in a programming

language (such as C++ or Java), there is a critical distinction: lines of code in a programming language are

executed line by line sequentially without any reference to a time axis. Hardware description languages, on the

other hand, attempt to model actual circuit operation, which may be very much time dependent. Specifically,

lines of code in VHDL can execute concurrently or sequentially, depending on the scenario (as we will see).

For this reason, we will normally say “Look at this VHDL code” instead of “Look at this VHDL program”.

VHDL stands for Very high-speed integrated circuit Hardware Description Language. The language has a

formal syntax that must be followed.

VHDL code has three main sections each related to an entity of the overall project. A given project may have

multiple entity’s. Each entity may use other entities in its implementation. For example, if your project was to

build a missile launcher, the Top Level Entity would be the Missile Launcher. The Missile Launcher Entity

may utilize a Down Counter Entity which may utilize a Flip-Flop Entity. The specifics for each project will

vary.

LIBRARY Declarations Architecture DeclarationsEntity Declarations

ENTITY(S)

PROJECT

A template for a VHDL file is shown below (not a working file). We begin by looking at the Library section.

2

The LIBRARY Declaration

3

This section lists the libraries of code that others have already written that you would like to use in your own

code. We will have this section read:

 LIBRARY ieee; -- Make ieee library available

 USE ieee.std_logic_1164.all; -- Make std_logic_1164 package available

This may look cryptic, but it makes available to you a set of code that you can freely use in your own design

saving you the time of creating it yourself. The LIBRARY statement says make the ieee library available.

Within that library, there may be multiple packages. The USE statement says make all parts of the

std_logic_1164 package available. For now, just consider this an opening stamp that you place on your code.

Note the semicolons in the two lines above. They are not optional. The semicolon indicates the end of a

statement. So if the semicolon indicates the end of a statement, what is the double dash after the semicolon?

As we write VHDL, we may want to include comments on our code. The double dash – allows us put

comments in the code that help us understand what is happening. The example above is a comment to

ourselves that reminds us what the LIBRARY and USE statements are accomplishing.

Comments can be placed on the same line as code as shown above or on their own line as shown below.

LIBRARY ieee;

-- EE = The best class ever!

 USE ieee.std_logic_1164.all;

The ENTITY section: This section specifies the name of our design entity, its inputs and its outputs. What the

design actually does to the inputs to arrive at the output is NOT of addressed in this section.

The basic format for the entity section using just input bits and output bits is:

ENTITY entity_name IS
 PORT(

 input_1, input_2, … , input_n: IN type;

 output_1, output_2, … , output_m: OUT type;

);

END entity_name ;

The value entity_name can be any name that you pick provided it meets certain constraints.

Naming Rules:

1. Begin with a letter.

2. Consist of letters, numbers, or the underscore character.

3. Can not end with an underscore.

4. Can not have two consecutive underscores.

5. Are case insensitive (ie. BIGDOG=bigdog)

6. Can not be a reserved word. (See Table 1)

Examples. Which of the following are valid names that I can choose in VHDL?

4

1. EC262
2. Slippery_fish
3. Project_25
4. Big_chickens
5. 2bae_surprise_quiz
6. _bae_surprise_quiz
7. bae_surprise_quiz_
8. bae__surprise_quiz
9. disconnect

1, 2, 3 and 4 are okay.

5 is bad: can’t start with a number.

6 is bad: can’t start with an underscore.

7 is bad… did I mention that it can’t end with an underscore

8 is bad… did I mention that it can’t have more than one underscore consecutively

9 is bad… did I mention that there are about 100 words that have special meaning in VHDL and cannot

be used as names for your choosing.

Between the open and close parenthesis we list all of our inputs and outputs.

Look at the line of code:

input_1, input_2, … , input_n: IN BIT;

Consider this line to be two sections, divided at the colon. Everything to the left of the colon is a list of names,

and everything to the right of the colon describes what those names are to function as. So, if we were to have

the line:

 a, b : IN BIT ;

that would mean that my entity is to have two ports named a and b that are to function as input bits.

RESERVED WORDS
abs case file label of range select unaffected

access component for library on record severity units

after configuration function linkage open register signal until

alias constant generate literal or reject shared use

all

generic loop others rem sla

 and disconnect group

out report sll variable

architecture downto guarded map

return sra

 array

mod package rol srl wait

assert else if

port ror subtype when

attribute elsif impure nand postponed

while

end in new procedure

then with

begin entity inertial next process

to

 block exit inout nor pure

transport xnor

body

is not

type xor

buffer

null

 bus

 Table 1 – List of reserved words.

5

Data Types
The IEEE Std 1076-1993 defines the four classes of data types as scalar (integer) types, floating point types,

physical types, and types defined by an enumeration of their values. While it is important to understand these if

you intend to make create your own type, at this time we shall focus on the predefined types from the IEEE Std

1076-1993 and IEEE Std 1164-1993. Table 2 lists each of the datatypes with the values they may hold. Types

that are part of the primary 1076 standard do not require the LIBRARY statement. More details for these types

can be found in Section 3 and Section 14.2 of the 1076 standard. Types that are part of the 1164 standard

require the LIBRARY statement. More details for these types can be found in Annex A of the 1164 standard.

SOURCE DATA TYPE VALUES

1
0
7
6

BOOLEAN FALSE, TRUE

BIT, BIT_VECTOR ‘0’, ‘1’

CHARACTER, STRING Any ISO 8859-1 Character

SEVERITY_LEVEL NOTE, WARNING, ERROR, FAILURE

INTEGER Implementation defined

At least ± 2147483647

REAL Implementation defined

At least ±1.0E38

TIME Implementation defined

At least ± 2147483647

1
1
6
4

STD_ULOGIC, STD_ULOGIC_VECTOR ‘U’,’X’,’0’,’1’,’Z’,’W’,’L’,’H’,’-‘

 (Unresolved)

STD_LOGIC, STD_LOGIC_VECTOR ‘U’,’X’,’0’,’1’,’Z’,’W’,’L’,’H’,’-‘

 (Resolved)

Table 2 – Predefined Data Types

OPERATORS
Each data type has certain operators defined that perform given function on the data such as logical AND or

relational comparisons. The symbol representing the function to be performed is called the operator. The data

the function is being performed on are called the operands and the result is simply called the result. Table 3

lists some of the operators defined in the 1076 standard. Section 7 of the 1076 standard gives details on what

values are allowed for each operator. In general, all operands must be the same type. This is not necessarily the

case so if you are getting a compiler error and can’t figure it out, verify that you meet the type requirements for

your operator.

Operator Class Operators
Logical AND, OR, NAND, NOR, XOR, XNOR

Relational =, /=, <, <=, >, >=

Shift SLL, SRL, SLA, SRA, ROL, ROR

Adding +, -, &

Sign +, -

Multiplying *, /, MOD, REM

Miscellaneous **, ABS, NOT

Table 3 – List of Common Operators

Note that the <= operator is an overloaded statement in that when not being used to compare two values, it will

assign the result on the right to the signal on the left.

The ARCHITECTURE Section
This section tells how the entity’s outputs relate to the entity’s inputs. That is, it tells the compiler what you

want the entity to do and how to do it.

6

The basic format for the architecture section is:

ARCHITECTURE arch_name OF entity_name IS

 --architecture declarative
BEGIN

 --architecture statement
BEGIN

END arch_name ;

entity_name is the name of the entity used in the ENTITY Section.

arch_name is a unique name for this architecture of the entity. It exists in case you desire to have different

architectures for a given entity. Typically you will only have one architecture for a given entity.

The architecture declarative contains declarations of items that are available for use within the

ARCHITECTURE section. This is where you would define things such as internal signals of the entity using

the SIGNAL keyword.

The architecture statement contains the statements that describe the operation of the ENTITY. All statements

in this section are executed concurrently with each other. Statements typically consists of a combination of

signals and operators designed to execute the desired function.

7

Example 1

To ground all this in an actual example, let’s write VHDL code to implement the following Boolean expression.

LIBRARY Declaration:

In this example, we will use the data type BIT thus the LIBRARY declaration is technically not required. This

is because the BIT type is part of the standard VHDL definition.

ENTITY Section:

Note again that the entity section is just a description of the inputs and outputs - the pins of the circuit.

ARCHITECTURE Section:

Notice the less than sign followed by an equal sign, with no space in between: <=. That symbol is the

assignment operator. So, the statement

F <= (A AND B) OR (NOT A AND B AND NOT C) OR (B AND C);

should be read:

 “If A, B, or C change, Compute the value of (AB + A'BC' + BC) and then assign that result to F.”

A complete vhdl file for the example above:

Note: syntax for

;

8

Entity name

Architecture

name

9

Example 2

Implement a full adder using VHDL. Recall the full adder has two input bits, a carry-in bit, a carry out bit, and

a sum bit. Assuming that the two numbers being added are A and B and the carry-in bit is denoted as C, the

Boolean expression for the carry-out bit is . The Boolean expression for the sum bit is

 ()

LIBRARY Declaration:

Note that since we define the inputs and outputs as type STD_LOGIC, we now must have the LIBRARY

declaration since STD_LOGIC is a type defined in the 1164 standard.

