EE313 - VHDL Part I

Representing Values in VHDL

Developing code requires entering data of many types. Whether you are initializing signals or typing in
operands for comparison statements, it is important that the data is entered correctly so that the compiler
understands your intent and you are saved the headaches of finding both syntax and semantic errors. Below we
illustrate how certain types of data should be entered into your VHDL code.

Decimal (Base-10) Values
Integers are represented in the usual way. For example, the integer fifty seven is represented by 57 and the
integer negative five is represented by -5.

VHDL also allows the use exponential notation. For example, the number 7000 can be represented as 7E3.
You might be asking yourself if you could type that number 7e 3 so that you don’t have to press the SHIFT key.
The answer is yes since VHDL is not case sensitive.

BITS/CHARACTERS
A bit or character is surrounded by single quotes. Examplesinclude '0', '1', '$', and 'X'.

BIT_VECTORS/STRINGS
A BIT_VECTORS is a collection of bits that are related. A STRING is a collection of characters that are
related. An example of how these would be defined in the ENTITY declaration is shown in (1) and (2).

ledg : OUT BIT VECTOR(7 DOWNTO O); (1)
name : OUT STRING (1 TO 4); (2)

Here the symbol 1edg is a BIT_VECTOR that represents the 6 green leds LEDG7 through LEDGO from the
DE2 board. If you wanted to assign a the binary number 00011010 to these 8 bits, you would use the following
VHDL statement.

ledg<="00011010"; (3)

If you removed the double quotation marks, you would get a VHDL type mismatch error because the compiler
would think you are trying to assign the decimal value eleven thousand ten to the BIT_VECTOR.

When changing a single BIT of a BIT_VECTOR, you treat it for what it is, a single BIT. For example, to
change only the BIT at index location 3 you would write

ledg(3)<='0"; (4)
STRINGS are treated similarly to BIT_VECTORS.

Hexadecimal Quantities

To represent a hexadecimal quantity, place the number in double quotes and precede it with an X. Using
hexadecimal can be used as a shortcut for typing in long BIT_VECTORS. The example shown in (3) above
would be written as shown in (4).

ledg<=x"1A"; (4)

VHDL Standard Data Types

When we want to use a SIGNAL (an input/output or internal value of a circuit) or when we want to use a
variable, we have to tell the compiler what the SIGNAL or variable is. Consider the circuit below, which shows
an input X to an ADDER.

Is X a single bit?

Or is X a group of two bits (to be applied as the control signals for a 2-4 multiplexer)?

Or is X a group of four bits (to be applied as the input to a 4-16 decoder)?

Or is X best viewed as a Boolean expression that results in a True/False question (e.g., is smoke emanating?)

The point: We must tell the compiler what X is supposed to be. Specifically, we must tell the compiler X’s
type. The allows the compiler to determine what operators are allowed and how to execute the operations.

Recall from VHDL Part I that a SIGNAL is defined using one of the two following syntaxes

SIGNAL portname: portmode type; —-- Used in the ENTITY declaration
SIGNAL signalname: type -- Used in the ARCHITECTURE declaration
where:

portname and signalname are user selected names meeting the standard Naming Rules
type is the data type including the size for vector data types
portmode is IN, OUT, INOUT, BUFFER, Or LINKAGE.

Note that the keyword SIGNAL may be omitted in the PORT section of the ENTITY declaration.

The pre-defined operators for some of the more common VHDL types are shown in Table 1 followed by a
number of examples illustrating how the various data types might be defined and used.

g
O
7 - —
S %) ﬁi %ﬂ
O S
s S o - -
= Pt} O| O] O | uW I
- Q pZa Flmlm | >
8 © h 18132 o|E |
© Ej %5 _ﬂ _ﬂ éé < Sﬁ Ea | w
AEREEE R IE
D o|o|w|»n|0|n|n|Z|x|F
. AND, OR, NAND,
Logical NOR. XOR, XNOR X | X | X | X | X
Other NOT X | X | X [X | X X
Relational | =, /=, <, <=, >, >= X | X | X | X | X [X | X X | X | X
. SLL, SRL, SLA,
Shift SRA, ROL, ROR X
Adding +, - X | X | X
Adding & X
Sign +, - X | X | X
Multiplying | *,/ X | X | X
Multiplying | MOD, REM X
Other *x X | X
Other ABS X | X | X

PORT (

Table 1 — Type Operators

Example ENTITY Definitions

a, b : IN BIT;

X, y ¢ OUT BIT;

key : IN BIT VECTOR (3 DOWNTO O) ;
ledg : OUT BIT VECTOR(7 DOWNTO O);

ledr : BUFFER BIT VECTOR(0O TO 17);

name: OUT STRING(1 TO 4)
) 7

END example;

Example ARCHITECTURE Definitions and signal uses.

ARCHI

BEGIN

END a

TECTURE arc OF example IS
SIGNAL c: BIT;

SIGNAL dl:
SIGNAL d2: STD LOGIC VECTOR(0 TO 7);
SIGNAL z: BOOLEAN;

SIGNAL initial: CHARACTER;

—— The RANGE of an INTEGER determines the

-- to store the value of the integer.
SIGNAL my4bitint:
SIGNAL my8bitint:
SIGNAL myreal: REAL;
SIGNAL mytime: TIME;

x<=NOT a;

STD LOGIC VECTOR(7 DOWNTO 0) ;

INTEGER RANGE 0 to 15;
INTEGER RANGE 0 to 255;

number of bits used

—— Uses 4 bits
—-— Uses 8 bits

y<="'1"; -- Assign 1 to bit x

ledg (3 downto 0)<=key; -- Assign inputs key (3 to 0)
ledr (0) <=key (3) ; -— Assign inputs key (3 to 0)

(
ledr (
ledr (
ledr (

<=key(1l);

)
) <=key (2);
)
) <=key (0);

1
2
3

to ledg (3 to 0)
to ledr (0 to 3)

ledr (4 to 7)<="1001"; -— Assign 1001 to ledr(4 to 7)

name<="USNA";
my4bitint<=3;
my8bitint<=2;
dl<="00100011";

—-— Roll ledr bits 0 to 3 RIGHT 3 times and store in

-- ledr bits 10 to 13.
-- if ledr is type OUT vice BUFFER.
ledr (10 to 13)<=ledr (0 to 3)

Note that this does not work

ROR my4dbitint;

-- Roll key bits 3 to 0 RIGHT 2 times and store in ledg

-— bits 7 to 4.

Note that the direction that the wvariable

-— 1s defined effects how the shift functions will work.

ledg (7 downto 4)<=key ROR my8bitint;
rc;

Concurrent Code

VHDL is inherently concurrent. This means that the lines of code can be viewed as all being executed at the
same time. If we want VHDL to NOT execute all lines at the same time—i.e., if we want VHDL to execute
lines of code sequentially, one after another—we have to specifically inform VHDL of this intent. Concurrent
code is also called dataflow code.

We have seen several examples of concurrent code that implements Boolean or arithmetic equations (mux,
decoder, full adder, etc).

Other fundamental types of statements that can be used in concurrent code are:
e Conditional signal assignments using WHEN/ELSE statements.
e Selected signal assignments using WITH/SELECT/WHEN statements.
e Structured assignments using GENERATE statements.

WHEN/ELSE Statement
Syntax:

<opticnal label>: <targetlx <=
<value> when <condition> else
<value> when <condition> else
<value> when <condition> else

;;é;:e>;
The conditions in a WHEN/ELSE statement are prioritized. The first output statement listed has the highest

priority and will be executed first, if the condition is true. If the first condition is not true, the second output
statement will be executed next, and so on.

WITH/SELECT /WHEN Statement

Syntax:
<optional label>: with <expression> select Commas are used in a
<target> <= <wvalue> when <choicesf, WITH/SELECT/WHEN
<wvalue> when <choicegd:>, statement

P
<«

<wvalue> when <choicesa>,

WHEN OTHERS must be used to
terminate a WITH/SELECT/WHEN

<value»(when

The selected signal assignment (WITH/SELECT/WHEN) examines the value of the expression and executes
only the assignment statement that matches the WHEN value, and all other statements are skipped.

WHEN OTHERS is required to terminate a WITH/SELECT/WHEN statement. This is used to ensure that all
possible choices of the expression are considered.

Note the use of commas in the syntax for the WITH/SELECT/WHEN statement.

WHEN/ELSE Examples
Implement a 4-to-1 mux using a WHEN/ELSE statement.

ENTITY mux 4 1 WE IS

BORT (
—— Input ports
=1, =0 : IN BIT :
fo,£f1,£f2,£3 : IN BIT :
—— Cutput port
max out : oUT BIT

o
END mux_&_l_WE :

LRCHITECTURE dataflow OF mux 4 1 WE IS

BEGIN
—— Implement 4 to 1 mux
muix out <= f0 WHEN (=1 = '0O' RAND =0 = '0") ELSE
fl WHEN (=1 = '0' AND =0 = "1')} ELSE
f2 WHEN (=1 = '"1' AND =0 = "0') ELSE

£3;

END dataflow ;

Note that if we use type BIT_VECTOR to combine S1 and SO into one signal of 2 bits, we can write the VHDL
code as:

EENTITY mux_4 1 WE b IS

| BORT |
—— Input ports
a : IN\EIT VECTOR (1 downto 0} :
fo,f1,£2,£3 : IN BIT
—-— Qutput portc
muE _out : COT EBIT

Yo
END mux 4 1 WE b ;

BIT_VECTOR type

—-Architecture body

EARCHITECTURE dataflow OF mux 4 1 WE b IS

E EEGIH
—— Implement 4 to 1 muax
mux out «= f0 WHEW = = ELSE
fl WHEN =5 = ELSE
f2 WHEN =5 = ELSE
£3:

END dataflow

WITH/SELECT /WHEN Examples
Implement a 4-to-1 mux using a WITH/SELECT/WHEN statement.

library IEEE; —— Declare which VHDL library

use IEEE.std logic 1l64.all; —-— and packages to use

ENTITY mux 4 1 WSW IS

BCORT |(
—— Input ports
= : IN BIT VECTOR (1 downto 0);
fo,f1,£f2,£3 : IN BIT ;
—— Cutput port
max out : OUT BIT

Yo
END mux_&_l_WSW :

LRCHITECTURE dataflow OF mux 4 1 W3W IS
BEGIN

—— Implement 4 to 1 muax
WITH = SELECT
mux out «= £0 WHEW "0O", - . " instead of ";"
fl1 WHEN ™Q1™,
f2 WHEWN ™10™,
f3 WHEN CTHERS:; -- cannot be "™ f£3 WHEN "11" ™

END dataflow

One important keyword, UNAFFECTED, that is often used to indicate no action is to take place for some
conditions. For example, let’s look at VHDL code for a 3-to-1 mux (output is assigned to one of 3 inputs).

ENTITY mux 3_1 IS

PORT |
—-— Input ports
= : TN BIT VECTOR (1 downto 0):
fo,f1,f2 : IN BIT :
—-— Qutput port
maE out : oUT BIT

Vo
END mux_B_l :

—-Architecture body

ARCHITECTURE dataflow OF mux 3 1 IS
BEGIN

—— Implement 4 to 1 moax
WITH = SELECT
max out «= £0 WHEW "OO0Ov, - " instead of ";"
f1 WHEN ™01™,
f2 WHEN ™10"™,
UNMAFFECTED WHEN OTHERS:

END dataflow !

Comparison Example 1

Implement F = (AB + CD) using the following three methods.
a. Boolean expression.
b WHEN/ELSE statement.
C. WITH/SELECT/WHEN statement.

Boolean Expression Solution
ENTITY example 1 a I3

BCORT |
-— Input ports
a,b,c,d : IN BIT;
-— Qutput port
£ : COUT BIT

)z
END example 1 a ;
——-Architecture body

RRCHITECIURE dataflow OF example 1 a IS
BEGIN

—— Implement the function £ = (a b' + c' d' !
f <= (a AND HNOT k) HWOR (NCOT c AND NOT d):

END dataflow ;

WHEN/ELSE Solution
LRCHITECTURE dataflow OF Example_l_b IS
BEGIN
f <= '1" WHEHN ((& = '"1" BND b = '0') HCOR (c = 'O' AND 4 = '0"')})} ELSE
L] |:| L] ;

END dataflow ;

WITH/SELECT /WHEN Solution
LRCHITECTURE dataflow OF example 1 o I3
BEGIN

—— Implement the function £ = (a b' + o' d' !
-- u=sing WITH/SELECT/WHEHN

WITH ((a AND NOT b) NOR (NOT c AND NOT d)) SELECT
£ <= "1' WHEN '1°',

'0' WHEN '0',

'0' WHEN OTHERS:

END dataflow

GENERATE Statement

GENERATE statement is another important concurrent statement that can be used to reduce number of lines of
code for structured circuits such as iterative systems. By employing GENERATE statement, a section of code
can be repeated for a number of times. GENERATE statement has two modes:

1. Unconditional GENERATE (FOR/GENERATE)
2. Conditional GENERATE (IF/GENERATE).

Syntax for unconditional GENERATE statement (FOR/GENERATE):

<generate labelx:
for «<loop id: in <rahge> HeEnerate
—-— Concurrent Itatement (3]
end generate;

Syntax for conditional GENERATE statement (IF/GENERATE):

<generate labelx:
if <econdition> generate
—-— Concurrent Itatement (3]
end generate;

Notes:
e A label is required for a GENERATE statement.
e |F/GENERATE is used within a FOR/GENERATE loop.
e loop_id is generally of type INTEGER.

GENERATE Example

Implement the following circuit using GENERATE statements. Assume that Switches 7 down to 0 are the A
inputs and Switches 17 down to 10 are the B inputs. The output C is displayed on the eight green LEDs. The
inputs A and B should be displayed on the corresponding red LEDs.

A (7 downto 0)

B (7 downto 0) | | |
| | | | |

Yy

C (7 downto 0)

Unconditional GENERATE Solution

ENTITY unconditional generate IS5

BORT (
=W
ledr

IN BIT VECTOR (17 DCWHNTC 0):
CUT B2IT VECTCR (17 DOWHTC 0);

—— Hote that Switches and Red LED=s & and S

-— are
ledg
)i

defined but not rea
OUT BIT VECTOR (7 DOWHTIC O)

END unconditional generate ;

ARCHITECTURE dataflow OF unconditional generate IS
BEGIN

ledr<=sw;

—— Display value of switch on Red LEDs

—— Take care of two HOR cases

ledg(0) ==
ledg(7) ==

sw(0) HOR sw(1l0);
sw(T) HOR sw(l7T):

—— Use GENERATE function to address & CR cases.

ucgen: FCR
ledg (i)

i IN 1 to & GEHERATE
<= zw(i) OR swi(i+l0):;

END GEWERLTE;
END dataflow;

Conditional GENERATE Solution

ENTITY conditional generate IS

PORT |
BW
ledr
—-— Hote
—— are
ledg
)i

TN BIT VECTOR (17 DOWNTOC 0);

OUT BEIT VECTOR (17 DOWNTO 0):

that Switche=s and Red LED= 8 and 9
defined but not rea

OUT BEIT VECTOR (7 DOWNTC Q)

END conditional generate ;

LRCHITECTURE dataflow OF conditional generate IS
BEEGIN

END

ledr<=aw;

cgen: FOR 1
— If i
ucgenl:

—— Di=splay wvalue of switch on Red LED=

IN 0 TCO 7 GENEEREATE
equal=s 0 or 7, use NOR
IF (i=0) OCR (i=7) GENERATE
ledgi(i) <= =wi(i) HOR =w(i+l10):
END GENEERATE:
iz not eqgqual to 0 or 7 use OR
IF (i/=0) AWND (i/=7) GEHERLTE
ledgi(i) <= =wii) CR =w(i+l0):
END GENEERATE:

END GEWNERATE:

dataflow;

10

Comparison Example 2

Implement a 2-to-4 decoder using
a. WHEN/ELSE statement.
b. WITH/SELECT/WHEN statement.
c. GENERATE statement.

WHEN/ELSE Solution

ENTITY example 2a IS
FORT |(
—— Input ports
zel : IN BIT VECTOR (1 downto 0);

—— Cutput ports
f : OUT BEIT VECTICR (3 downto 0)
Vo
END example 2a ;

ARCHITECTURE dataflow OF example 2a IS5

BEGIN
—— Implement function Z2-to-4 decoder;
f <= "O001™ WHEN sel = "00" ELSE
"O010™ WHEN sel = "01™ ELSE
"0100™ WHEN sel = "10"™ ELSE
r|'_|:||:||:| n

END dataflow

WITH/SELECT/WHEN Solution
(Uses Same ENTITY Section as WHEN/ELSE Solution)
LRCHITECTURE dataflow OF Example_Eb IS5

BEGIN
WITH sel SELECT
£ «= "O0001™ WHEW "™O0O",
"O0010™ WHEN "oO1",
"0l00"™ WHEN "i1ad",

"1000"™ WHEN OTHERS:

END dataflow ;

GENERATE Solution
ENTITY example 2c IS

PORT {
ledg : OUT BIT VECTOR DOWNTO 0) Note: type INTEGER

)z
END example Zc ;

ARCHITECTURE dataflow OF example 2c IS
BEGIN

gen: FOR i IN O TO 3 GENERATE
ledg(i) <= '1' WHENW ELSE 0

END GEHERATE;
END dataflow;

11

STD_LOGIC Type

Although declaring a signal to be a BIT or a BIT_VECTOR is intuitive and easy to understand, it is actually

frowned upon! It is common practice to use the STD_LOGIC and STD_LOGIC_VECTOR types in place of
the BIT and BIT_VECTOR types. The reasons why could be debated but the primary benefit is it can have a
value of more than just ‘1°, or ‘0’. Specifically it allows for conditions such as the High Impedance condition
necessary for a buffer and other special case conditions. The values that the STD_LOGIC type may have are

shown in Table 2.

Value

Description

Uninitialized

Forcing Unknown

Forcing 0

Forcing 1

High Impedance

Weak Unknown

Weak 0

I|r|S|Nr|o|X|C

Weak 1

Don’t Care

Table 2 - STD_LOGIC Values

12

Seemingly Complicated Example
An ALU.

——Library declaration

library IEEE; —— Declare which VHDL library
use IEEE.std logic 1164.all; —— and packages to use
use IEEE.=std logic unsigned.all; -- for +, - operators

—-— Entity declaration
ENTITY alu IS

PORT |
a, b : IN STD LOGIC VECTOR (7 DOWNTO O);
cin : IN STD _LOGIC|
opeode ¢ IN STD LOGIC VECTOR (3 DOWNTO O);
v : OUT STD LOGIC VECTOR (7 DOWNTO O)
i

END alu:

——Architecture hody
ARCHITECTURE alu arch OF alu I3

SIGHNAL v logical ¢ STD LoGIC VECTOR [7 DOWNTO O);
SIGHAL v _arith i STD _LOGIC WECTOR [7 DOWNTOC O j;
BEEGIN
WITH opcode| 2 downto 0O) SELECT
¥ _logical <= NOT & WHEN ffOooo™

NOT b WHEM "oo1i"™
AD b WHEN "0O10"
OF b WHEN "O11"
HNAND b WHEN "100"
HNOR b WHEN "1i01"
EOR b WHEN "110"
FEMOE b WHEN OTHEERS:

b L []

WITH opcode| 2 downto 0O) SELECT
¥y _arith <= a WHEN "0o0O"
b WHENWN ™o0o1r

a + 1 WHEM "o10"
h + 1 WHEM "oO11" ,
a — 1 WHEM "1i00"™
h - 1 WHEM "1i01" ,
a4 + b WHEM "1i1i0" ,
a4 + b + cin WHEM OTHEERS:

WITH opcode (3) 3ELECT
¥ += v¥_logical WHEN '0',
v _arith WHEN OTHER3:

END alu arch;

13

