
1

EE313 - VHDL Part III

GENERIC Parameters

We can declare a generic parameter in our entity or architecture VHDL sections. Recall our mux entity from

last lecture:

ENTITY mux IS

 PORT(

 x0, x1, x2, x3 : IN BIT_VECTOR (7 DOWNTO 0);

 sel : IN BIT_VECTOR (1 DOWNTO 0);

 y : OUT BIT_VECTOR (7 DOWNTO 0)

);

END mux;

An alternative way to represent this same entity would be as:

ENTITY mux IS

 GENERIC (N : INTEGER := 8);

 PORT(

 x0, x1, x2, x3 : IN BIT_VECTOR (N-1 DOWNTO 0);

 sel : IN BIT_VECTOR (1 DOWNTO 0);

 y : OUT BIT_VECTOR (N-1 DOWNTO 0)

);

END mux;

Note the line:
GENERIC (N : INTEGER := 8);

This line declares a parameter named N and assigns it the value of 8. Notice that for a generic parameter (which

serves as a constant) a value is assigned using the symbol := (this is different for a signal, for which a value is

assigned using the symbol <=).

What does this code do? Anywhere in the VHDL code that defines the entity mux, if N is encountered, it will

be immediately replaced with 8.

So, the line above that says:
x0, x1, x2, x3 : IN BIT_VECTOR (N-1 DOWNTO 0);

is treated as:
 x0, x1, x2, x3 : IN BIT_VECTOR (7 DOWNTO 0);

Why would we want to do this? ..How does the use of a generic parameter improve our code?

If properly implemented and we need to change our multiplexer from an 8 bit to a 32-bit multiplexer, we only

need to change the generic parameter from 8 to 32.

2

RANGE/REVERSE_RANGE

Once we declare a variable, say a, with a range, we can refer to its range as a’RANGE . For example, if we had

the declaration
 a ,b, x : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

and later had a generate statement such as:
 fun: FOR i IN 0 TO 7 GENERATE

 x(i) <= a(i) NOR b(i) ;

 END fun;

we could instead use the following for the generate statement:

fun: FOR i IN a’RANGE GENERATE

 x(i) <= a(i) NOR b(i) ;

 END fun;

Again, as with generic parameters, the idea is to make code easier to change.

3

GENERIC/RANGE Example
Design a 3 bit address decoder that has the following truth table shown below:

 enable address word_line

 0 XXX 11111111

 1 000 11111110

 1 001 11111101

 1 010 11111011

 1 011 11110111

 1 100 11101111

 1 101 11011111

 1 110 10111111

 1 111 01111111

Now, suppose instead of a 3bit address decoder, a 32-bit address decoder was needed. What would need to

change in the code above? Since the GENERIC and RANGE functions were used, the only required change is

the line declaring the value of N. Specifically, the number 3 would be replaced with 32.

4

SIGNED/UNSIGNED Numbers

We can declare values to be SIGNED or UNSIGNED. SIGNED numbers use the normal two’s complement

notation. For SIGNED numbers, we must include the library ieee.numeric_std.all . Signed and

Example: The program below implements a multiplier. If the decimal value of a is 13 and the decimal value of

b is 2, what will be the value of y (as 8 bits) after this section of code executes?

(13)(2) = 26, so y will be 00011010

If the decimal value of a is 13 and the decimal value of b is 2, what will be the value of y (as 8 bits) after this

section of code executes?

5

Now a has the value of -3. So y will have the value of -6.

In eight bits, -6 is 11111010

6

Type Conversion

Suppose you are working with a team of warfighters on a big design project. Eventually, all of your pieces of

VHDL must all come together without any hitches. All teams must use two inputs labeled a and b, where a and

b are defined as:

 a, b : IN STD_LOGIC_VECTOR(3 DOWNTO 0);

The head warfighter (CAPT Kirk) has asked you to design an entity and architecture for a multiplier, that will

return the product of a and b. It is necessary that the product appear as:

 prod : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

CAPT Kirk said that he tried to use the multiply symbol (prod <= a * b ;), but his program crashed

with the error message:

INCOMPATIBLE TYPES CODE 1298 MULTIPLY UNRESOLVED 1A CANNOT MULTIPLY BIT

VECTORS SQUAWK SQWUAWK CODE 42 NITWIT ALERT

What do you do?

Convert the bit vectors to signed numbers, do the multiplication, and then convert back.

To convert from one type to another, we use the syntax:

 newtype(identifier)

So, for example, to convert a to a signed number, we could use SIGNED(a).

