
1

EC313 - VHDL Part IV

 Statement Description

C
o
n

cu
rr

en
t

BLOCK An internal block representing a portion of a design

PROCESS An independent sequential process representing the behavior of some portion of the design.

CONCURRENT_PROCEDURE_CALL A process containing the corresponding sequential procedure call statement.

CONCURRENT_ASSERTION A passive process statement containing the specified assertion statement.

CONCURRENT_SIGNAL_ASSIGNMENT
An equivalent process statement that assigns values to signals.

(sequential_assignment, if, case, or null)

COMPONENT_INSTANTIATION
Defines a subcomponent of the design entity in which it appears, associates signals or values with the ports of

that subcomponent, and associates values with generics of that subcomponent.

GENERATE Provides a mechanism for iterative or conditional elaboration of a portion of a description.

WAIT Causes the suspension of a process statement or a procedure.

S
eq

u
en

ti
a
l

ASSERTION Checks that a specified condition is true and reports an error if it is not.

REPORT Displays a message.

SIGNAL_ASSIGNMENT Modifies the projected output waveforms contained in the drivers of one or more signals. (pg. 115)

VARIABLE_ASSIGNMENT Replaces the current value of a variable with a new value specified by an expression.

PROCEDURE_CALL Invokes the execution of a procedure body.

IF
Selects for execution one or none of the enclosed sequences of statements, depending on the value of oen or
more corresponding conditions

CASE
Selects for execution one of a number of alternative sequences of statements; the chosen alternative is defined

by the value of an expression.

LOOP Includes a sequence of statements that is to be executed repeatedly, zero or more times.

NEXT Used to complete the execution of one of the iterations of an enclosing loop statement.

EXIT Used to complete the execution of an enclosing loop statement.

RETURN Used to complete the execution of the innermost enclosing function or procedure body.

NULL Performs no action.

Table 1 – Sequential vs Concurrent Statements

Sequential Code

We mentioned before that VHDL code is inherently concurrent—all statements can be thought to execute at the

same time. Sometimes it is important to have statements execute sequentially. We may want something to

change only after the trailing edge of a clock or only after the a flip-flop’s input has changed. VHDL allows us

to force statements to execute one after another by placing the statements inside a PROCESS. Table 1 lists the

Sequential and Concurrent statements available. It is EXTREMELY important to understand that some

statements are only used during simulations. This means that you can not rely on them for designs that are

intended to be synthesized in hardware.

2

PROCESS Statements

A PROCESS is a group of statements that execute sequentially. This group of sequential statements will be

placed between the reserved word PROCESS and the statement END PROCESS. The syntax for a PROCESS

statement is as follows,

 process_label : PROCESS (sensitivity list) is

-- Local Declarations

 BEGIN

 -- Statements that will execute sequentially

 END PROCESS process_label;

The process itself is located within the ARCHITECTURE section of VHDL code

So, if the statements inside a PROCESS do not run concurrently, when do they run? What will trigger the

statements inside a PROCESS to start their sequential execution? If all we are doing is simulating, we place a

list of signals that will trigger the process after the keyword PROCESS. Any change in one of these signals will

cause the process to run in the simulator. This list is called the sensitivity list.

Example: PROCESS (a , b , clk) -- sensitivity list

 BEGIN

sequential statements

 END PROCESS;

Now, any change in a, b, or clk will cause the process to run in a simulator. While this is great for simulators,

we would actually like to synthesize our design. We then need to put in a statement that ensures the contents of

the process statement are only run when they occur. For the example above we would right the following code.

Example: PROCESS (a , b , clk)

 BEGIN

IF a=’0’ or b=’0’ then

-- Perform asynchronous sequential statements

 ELSIF clk=’1’ and clk’event then

 -- Perform synchronous sequential statements

 ENDIF

 END PROCESS;

This code will execute the asynchronous sequential statements whenever a or b are 0. It will perform the

synchronous sequential statements whenever the clk signal transitions from 0 to 1. It is only during these three

cases that any of the code will be executed because we put all the statements inside of the IF statement. Note

that for the clk signal, we have a new notation clk’event. All data types have certain attributes associated

with them. If we want to see what a particular attribute is, we follow the signal with a single quote and the

attribute name as shown above. Here the clk attribute event is TRUE when the signal changes state.

3

PROCESS Statement note: The value of a SIGNAL is only updated at the end of the PROCESS Statement. If

you need to update a value inside of a PROCESS statement and access the updated value in the same statement,

you should use a VARIABLE.

Variables
Sometimes, we may want to use variables within a process to hold temporary or intermediate results. We can

declare variables within a process by using the VHDL reserved word VARIABLE. We assign values to

variables using the ≔ operator. We can also assign initial values to such variables by using the assignment

operator := .

Example: PROCESS (a , b , clk)

 SHARED VARIABLE a: INTEGER RANGE 0 TO 7;

 VARIABLE b: BIT_VECTOR(2 DOWNTO 0) := “101” ;

 BEGIN

-- sequential statements
 END PROCESS;

Note that a has the modifier SHARED in front of the keyword VARIABLE. This allows the value to be shared

between multiple process statements.

SEQUENTIAL STATEMENTS
Three sequential statements allowed within a process that we will discuss include: IF, LOOP and CASE.

It is important to note that these three statements are only allowed inside a PROCESS. Using any of these three

statements within concurrent code will cause a compile time error.

The IF Statement The syntax for the IF statement is:

IF (conditions) THEN

 -- statements/assignments;

ELSIF (conditions) THEN

 -- statements/assignments;

 ELSE

 -- statements/assignments;

END IF;

Example
IF x < 30 and y > 0 THEN

 temp := "00001111" ;

ELSIF (x = y AND w = '0') THEN

 temp := "11110000";

ELSE

 temp := "00000000" ;

END IF;

The IF statement checks the conditions in sequence, one-by-one. As soon as a set of conditions are met, the

appropriate statements are executed and assignments made then the IF statement exits. In the above example,

the first condition that is checked is

This section may be repeated any

number of times

4

 x < 30 and y > 0

If this is indeed the case (say x = 2 and y = 3), then temp is assigned the value

 00001111

and we exit the IF statement altogether, without checking the next set of conditions x = y AND w = ‘0’.

Example 1
Example: Write a process to implement a positive-edge triggered D flip flop that also has an asynchronous

active-low reset input. Assume that the entity which declares the flip flop is:

 ENTITY dflipflop IS

 PORT(

 d, clk, rst : IN STD_LOGIC;

 q : OUT STD_LOGIC

);

 END ENTITY;

 ARCHITECTURE arc OF dflipflop IS

 BEGIN

PROCESS (clk , rst)

BEGIN

IF rst = '0' THEN

 q <= '0' ;

ELSIF (clk'EVENT AND clk = '1') THEN

 q <= d;

END IF;

 END PROCESS;

 END arc;

5

Example 2
Example: Write the ARCHITECTURE to implement a 0-to-9-counter that counts:

 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, …

We would like the counter to be positive-edge clock controlled. The complete design is:

Note that the values of a process’s variables are remembered by the process. So, when a process is called a

second time, the values of its variables will be the same as when that process last ended.

Also, note that a process will update a signal only once and only when the process ends.

6

Example 2 Question 1
What would happen if we ended the process in Example 2 with the three lines of code:
 ...

count <= temp - 1 ;

count <= temp + 1;
count <= temp ;

END PROCESS;

Example 2 Answer 1:
Only the last assignment would be effective.

Example 2 Question 2
Is there any reason why you should ever have multiple assignments to the same signal in a PROCESS

statement?

Example 2 Answer 2:
 Not Really

Example 2 Question 3
Question: Is a VARIABLE within a PROCESS updated immediately, or only when the PROCESS ends?

Example 2 Answer 3
Immediately. In the line temp := temp + 1 ; the variable temp is updated immediately and this

new updated value of temp is used in the next statement IF (temp = 10)...

Notes about VARIABLEs and SIGNALs
 A SIGNAL can be passed between PROCESSES.

 A VARIABLE can never be passed out of a PROCESS if it is declared a SHARED VARIABLE.

Otherewise, it must be assigned to a SIGNAL or another SHARED VARIABLE.

 Assignment operator for a SIGNAL is “<=”. For example, sig <= 4;

 Assignment operator for a VARIABLE is “:=”. For example, var := 4;

7

Miscellaneous Examples

Signals vs Variables Example
An example to show the difference between signals and variables is shown below.

Signal:

temp_A <= temp_A + 2;

temp_A <= temp_A + 3;

Only the last statement is

effective

Variable:

temp_B := temp_B + 2;

temp_B := temp_B + 3;

variable temp_B is updated immediately and the

new value is used in the next statement.

8

Concatenation Examples
Concatenation operation & is sometimes useful when operating on bit vectors. Let’s say that y is a defined as a

BIT_VECTOR(3 DOWNTO 0) and x is defined as BIT := ‘1’;

What is the result of the statement
 y <= x & “101”;

 y has the value “1101”

What is the result of the statement
 y <= ‘0’ & “10” & x ;

 y has the value “0101”

Assuming y has the value from the prior example, what is the result of the statement
 y <= ‘0’ & y(2) & x & ‘0’ ;

 y has the value “0110”

9

Shift Register Example
Design the shift register below using VHDL:

10

The LOOP Statement

The LOOP Statement The LOOP statement is similar to the GENERATE statement in that it allows us to repeat

a statement a number of times. The syntax for the LOOP statement is:

 FOR identifier IN range LOOP

 sequential statements;

 END LOOP;

An example of a FOR loop might be:

 FOR i IN 0 TO 10 LOOP

 x(i) <= a(i) XOR b(i) ;

 y(i) <= NOT a(i) ;

 END LOOP;

How many times will the LOOP above iterate?

 11 (from 0 to 10 inclusive)

11

4 Bit Adder Example
Write sequential VHDL to implement the 4-bit adder as shown below. Assume numbers are unsigned. The

following ENTITY is given:

12

The CASE Statement
The CASE statement plays a role in sequential code similar to that played by the WITH-SELECT-WHEN

statement in concurrent code. The syntax for the CASE statement is:

CASE expression IS

 WHEN value1 => assignments;

 WHEN value2 => assignments;

 ...

END CASE;

7 Segment Display Driver Example
Implement a 7 Segment Plus decimal Active Low Display Driver using the case statement. The input will be a

4 bit binary number. The output will be the segments of the 7 Segment Plus Decimal display. Assume the

Decimal place of the display is not used.

