EC313 - VHDL Part IV

Statement

Description

BLOCK

An internal block representing a portion of a design

PROCESS | An independent sequential process representing the behavior of some portion of the design.
-E CONCURRENT_PROCEDURE_CALL | A process containing the corresponding sequential procedure call statement.
(B}
t CONCURRENT_ASSERTION | A passive process statement containing the specified assertion statement.
= - - -
8 CONCURRENT SIGNAL_ASSIGNMENT An equn_/alent process stgtement that assigns values to signals.
) (sequential_assignment, if, case, or null)
@) Defines a subcomponent of the design entity in which it appears, associates signals or values with the ports of
COMPONENT_INSTANTIATION that subcomponent, and associates values with generics of that subcomponent.
GENERATE | Provides a mechanism for iterative or conditional elaboration of a portion of a description.
WAIT | Causes the suspension of a process statement or a procedure.
ASSERTION | Checks that a specified condition is true and reports an error if it is not.
REPORT | Displays a message.
SIGNAL_ASSIGNMENT | Modifies the projected output waveforms contained in the drivers of one or more signals. (pg. 115)
VARIABLE_ASSIGNMENT | Replaces the current value of a variable with a new value specified by an expression.
— PROCEDURE_CALL | Invokes the execution of a procedure body.
©
= IE Selects for execution one or none of the enclosed sequences of statements, depending on the value of oen or
% more corresponding conditions
) CASE Selects for execution one of a number of alternative sequences of statements; the chosen alternative is defined
g by the value of an expression.
n LOOP | Includes a sequence of statements that is to be executed repeatedly, zero or more times.
NEXT | Used to complete the execution of one of the iterations of an enclosing loop statement.
EXIT | Used to complete the execution of an enclosing loop statement.
RETURN | Used to complete the execution of the innermost enclosing function or procedure body.
NULL | Performs no action.

Table 1 — Sequential vs Concurrent Statements

Sequential Code

We mentioned before that VHDL code is inherently concurrent—all statements can be thought to execute at the
same time. Sometimes it is important to have statements execute sequentially. We may want something to
change only after the trailing edge of a clock or only after the a flip-flop’s input has changed. VHDL allows us
to force statements to execute one after another by placing the statements inside a PROCESS. Table 1 lists the
Sequential and Concurrent statements available. It is EXTREMELY important to understand that some
statements are only used during simulations. This means that you can not rely on them for designs that are
intended to be synthesized in hardware.

PROCESS Statements

A PROCESS is a group of statements that execute sequentially. This group of sequential statements will be
placed between the reserved word PROCESS and the statement END PROCESS. The syntax for a PROCESS
statement is as follows,

process label : PROCESS (sensitivity list) 1is

-— Local Declarations
BEGIN

-— Statements that will execute sequentially
END PROCESS process label;

The process itself is located within the ARCHITECTURE section of VHDL code

So, if the statements inside a PROCESS do not run concurrently, when do they run? What will trigger the
statements inside a PROCESS to start their sequential execution? If all we are doing is simulating, we place a
list of signals that will trigger the process after the keyword PROCESS. Any change in one of these signals will
cause the process to run in the simulator. This list is called the sensitivity list.

Example: PROCESS (a , b, clk) -- sensitivity list
BEGIN
sequential statements

END PROCESS;

Now, any change in a, b, or clk will cause the process to run in a simulator. While this is great for simulators,
we would actually like to synthesize our design. We then need to put in a statement that ensures the contents of
the process statement are only run when they occur. For the example above we would right the following code.

Example: PROCESS (a , b, clk)
BEGIN
IF a="0’ or b='0’ then
-- Perform asynchronous sequential statements
ELSIF clk="1’ and clk’event then
-- Perform synchronous sequential statements
ENDIF
END PROCESS;

This code will execute the asynchronous sequential statements whenever a or b are 0. It will perform the
synchronous sequential statements whenever the clk signal transitions from 0 to 1. It is only during these three
cases that any of the code will be executed because we put all the statements inside of the TF statement. Note
that for the c1k signal, we have a new notation c1k’ event. All data types have certain attributes associated
with them. If we want to see what a particular attribute is, we follow the signal with a single quote and the
attribute name as shown above. Here the c1k attribute event is TRUE when the signal changes state.

PROCESS Statement note: The value of a SIGNAL is only updated at the end of the PROCESS Statement. If
you need to update a value inside of a PROCESS statement and access the updated value in the same statement,
you should use a VARIABLE.

Variables

Sometimes, we may want to use variables within a process to hold temporary or intermediate results. We can
declare variables within a process by using the VHDL reserved word VARTIABLE. We assign values to
variables using the := operator. We can also assign initial values to such variables by using the assignment
operator : = .

Example: PROCESS (a , b, clk)
SHARED VARIABLE a: INTEGER RANGE 0 TO 7;
VARIABLE b: BIT VECTOR(2 DOWNTO 0) := “101” ;
BEGIN
-- sequential statements
END PROCESS;

Note that a has the modifier SHARED in front of the keyword VARIABLE. This allows the value to be shared
between multiple process statements.

SEQUENTIAL STATEMENTS

Three sequential statements allowed within a process that we will discuss include: IF, LOOP and CASE.

It is important to note that these three statements are only allowed inside a PROCESS. Using any of these three
statements within concurrent code will cause a compile time error.

The IF Statement The syntax for the IF statement is:

IF (conditions) THEN
-- statements/assignments;

ELSIF (conditions) THEN This section may be repeated any
-- statements/assignments; number of times

ELSE
-- statements/assignments;
END IF;
Example
IF x < 30 and y > 0 THEN
temp := "00001111" ;
ELSIF (x = y AND w = '0') THEN
temp := "11110000";
ELSE
temp := "00000000" ;
END IF;

The 1F statement checks the conditions in sequence, one-by-one. As soon as a set of conditions are met, the
appropriate statements are executed and assignments made then the TF statement exits. In the above example,
the first condition that is checked is

x < 30 and y > 0

If this is indeed the case (say x = 2 and y = 3), then temp is assigned the value
00001111

and we exit the TF statement altogether, without checking the next set of conditions x = y AND w = ‘0’.

Example 1
Example: Write a process to implement a positive-edge triggered D flip flop that also has an asynchronous
active-low reset input. Assume that the entity which declares the flip flop is:

ENTITY dflipflop IS
PORT (
d, clk, rst : IN STD LOGIC;
g : OUT STD LOGIC
)
END ENTITY;

ARCHITECTURE arc OF dflipflop IS

BEGIN
PROCESS (clk , rst)
BEGIN
IF rst = '0' THEN
g <= "'0" ;
ELSIF (clk'EVENT AND clk = '1') THEN
g <= d;
END IF;
END PROCESS;
END arc;

Example 2
Example: Write the ARCHITECTURE to implement a 0-to-9-counter that counts:

0,123,4,56,7,8,9,0,1,2,3, ...

We would like the counter to be positive-edge clock controlled. The complete design is:

1
2 —-— O-to-S9-counter
3
4 LIERALRY IEEE:
5 USE IEEE.STD LOGIC 1164.ALL:
&
7 EENTITY counter 09 IS
(= = FORT |
= clk : IN STD LOGIC:
10 count 1 OUT INTEGER RANGE 0O To 9
11 1:
iz ENI» ENTITY:
]
14 HARCHITECTURE counter OF counter 09 I3
15 HEBEGIN
16 |
17 = FPEOCESS | clk)
15 VARIAELE tTemp : INTEGER EANGE 0O to 10;
19
20 BEEGIN
21 = IF | clk'EVENT LWD clk = '1' | THEN
22 temp := Temp + 1 !
23
24 = IF | temp = 10) THEHN
25 temp = 0;
26 END IF:
27 o
25 END IF:
29 o
30 count <= temp ;
31 ENDI» PROCESS:
3z o
33 ENI' ARCHITECTURE:
Mame ;aI:II:E ak :jps 1 ! ! 1 1 1 1
= clk ED
P Eocount UD o W 1 K2 W3 f e s h e W7 fe e Ko W ¥z Wa ¥ 4 W s %

Note that the values of a process’s variables are remembered by the process. So, when a process is called a
second time, the values of its variables will be the same as when that process last ended.

Also, note that a process will update a signal only once and only when the process ends.

Example 2 Question 1
What would happen if we ended the process in Example 2 with the three lines of code:

count <= temp - 1 ;
count <= temp + 1;
count <= temp ;

END PROCESS;

Example 2 Answer 1:
Only the last assignment would be effective.

Example 2 Question 2
Is there any reason why you should ever have multiple assignments to the same signal in a PROCESS
statement?

Example 2 Answer 2:
Not Really

Example 2 Question 3
Question: Is a VARIABLE within a PROCESS updated immediately, or only when the PROCESS ends?

Example 2 Answer 3
Immediately. Intheline temp := temp + 1 ; thevariable temp is updated immediately and this
new updated value of temp is used in the next statement IF (temp = 10)...

Notes about VARIABLESs and SIGNALSs
e A SIGNAL can be passed between PROCESSES.
e A VARIABLE can never be passed out of a PROCESS if it is declared a SHARED VARIABLE.
Otherewise, it must be assigned to a SIGNAL or another SHARED VARIABLE.
e Assignment operator for a SIGNAL is “<=". For example, sig <= 4;
e Assignment operator for a VARIABLE is “:=". For example, var := 4;

Miscellaneous Examples

Signals vs Variables Example
An example to show the difference between signals and variables is shown below.

2 -— wariashle ws signal
3 LIBRARY IEEE:
4 U3E IEEE.3TD LOGIC 1164.ALL:
5 uze IEEE.3TD LOGIC UNSIGNED.ALL: -- for +, - operators
& [HENTITY war sig I3
7 = PORT |
S8 clock , reset : IN STD LoOGIC:
= L out, B out : ouT STD LoGIC VECTOR (3 downto O]
10 - 1
11 -END ENTITY:
12 ElLRCHITECTURE arch OF var sig I3
13 | - AIGHNAL DECLARATION -—-——------—————————— ——————————
14 -3IGHNAL temp A : 3TD LOGIC VECTOR (3 DOWNTO 0O):
15 EEBEGIN
16 = PROCESS (reset, clock)
B I WARIABLE DECLARATION —-—-—-—-—---—————————————————
15 VARTABLE temp B : 3TD LOGIC VECTOR (3 DOWNTD O):
139 BEGIN
20 = IF | reset = '1')| THEN
21 temp A4 <= [(OTHERS =»> '0'})
22 - tewmp B := [OTHERZ =»> '0'}
23 = EL3IF | clock'EVENT AND clock = '1' | THEN
24 temp A <= temp A4 + Z:
25 temp A <= temp A4 + 3:
26 temp B := temp B + Z:
27 temp B := temp B + 3:
28 - ENL IF:
29 -— lssign outputs
30 L out <= temp A;
31 B out <= temp E:
32 - END PROCERS:
33 END ARCHITECTURE;
0 ps 20.0 ns 160.0 ns 240.0 ns 320.0 ns 400.0 ns 430.0 ns
Name Value at i] 1 '] i |
0ps 0 ps
dock. BO s R n R En R N R A AR RS R
resek B1
Aol HO 0}3}(5*9X5XF*2*5
#Bout HO o~ % 5 a4 ¥ F ¥ 4 ¥ ¢+ 4 e X s

™~

Signal: Variable:

temp_A <=temp_A + 2; temp_B :=temp B + 2;

temp_A <=temp_A + 3; temp_B :=temp_B + 3;

Only the last statement is variable temp_B is updated immediately and the
effective new value is used in the next statement.

v

Concatenation Examples
Concatenation operation & is sometimes useful when operating on bit vectors. Let’s say that y is a defined as a

BIT VECTOR(3 DOWNTO 0) and X is defined as BIT := ‘1’;

What is the result of the statement
y <= x & “101”;
y has the value “1101”

What is the result of the statement
y <= ‘0" & “10” & x ;
y has the value “0101”
Assuming y has the value from the prior example, what is the result of the statement
y <= ‘0" & y(2) & x & 0" ;
y has the value “0110”

Shift Register Example
Design the shift register below using VHDL.:

din dout
— D Q » D Q *» D Q * D Q>
= rst [~ rst = rst = rst
clk
rst
1
2 El-- M-hit shift register (right shift)
3 |_—— 2erial in, =serial out zhift register
4
= LIERARY IEEE:
& U3IE IEEE.3TD LOGIC _1164.ALL:
7
=] EIENTITY ghift register N I3
= | GEMERIC ([M : INTEGEERE := 4):
10 EFORT(
11 din, elk, rst : 1IN STD_LOGIC:
1z dout : OUT STD_LOGIC
13 1
14 END shift register N:
15
16 EJARCHITECTURE arch OF ghift register N I3
17 ElBEGIN
15 = PEOZESS | rst , clk)
19 VARTAELE o ¢ 3TD_LOGIC WECTOR(N-1 DOWNTO O); —- internsl register
20
21 EEGIN
22 = IF [st = '1' | THEMN
25 F o := (OTHERS => '0']:
24 = EL2IF [clk'EVENT AMND clk = '1') THEM —— leading edge
25 g := din &£ ogif N-1 DOWNTO 1) :
26 EMD IF:
27 dout <= gi0):
28 END» PROCESS:
29 EMD arch:

-

clk. B0
rsk E1l

din B1
*q E 0000 0000 1000 ¥ 1100 % 1110 ¥ 1111
dout BO |

The LOOP Statement

The L.OOP Statement The LOOP statement is similar to the GENERATE statement in that it allows us to repeat
a statement a number of times. The syntax for the ZLOOP statement is:

FOR identifier IN range LOOP
sequential statements;
END LOOP;
An example of a FOR loop might be:

FOR i1 1IN O TO 10 LOOP

x(1) <= a(1) XOR b(i) ;
y(1i1) <=NOT a(1) ;
END LOOP;

How many times will the LOOP above iterate?

11 (from 0 to 10 inclusive)

10

4 Bit Adder Example
Write sequential VHDL to implement the 4-bit adder as shown below. Assume numbers are unsigned. The
following ENTITY is given:

s0 51 52 53
O Tra LS TR LS2 JRa L2 L FA L cout
a0 b0 al b1 a2 b2 a3 b3

1

2 -— N-bit ripple adder

3

4 LIERARY IEEE:

5 U3E IEEE.3TD _LOGIC_1164.LLL:

£

7 EHENTITY ripple adder N I3

= GENERIC (N : INTEGER := 4):

= = PORT

10 a, b ¢ IN 3TD_LOGIC VECTOR(N-1 DOWNTO O):

11 cin : IN 3TD_LOGIC:

1z = : OUT 3TD_LOGIC VECTOR({ N-1 DOWNTO O):

13 cout @ OUT 3TD_LOGIC

14 = 1

15 END ripple adder MN:

16 =

17 HARCHITECTURE structure OF ripple adder N I3

18 BEEBEGIN

19 = PROZESS [a , b , oin)

20 VALRIABRLE = ¢ 3TD_LOGIC WECTOR{ N DOWNTO O):

21

22 BEGIN

23 cid) := oin:

24 = FOE i IN 0O TO N-1 LOOF

25 2(i) <= al(i) XOR bi(i) XOR ci(i) :

26 cli+l) = f(af(i) AND bi(i)) OF [(a(i) AND c(i))

27 DR (bi(i) AND c(i)):

28 END LoOOQP:

29 =

30 cout <= o (M)

31 = ENDI PROCEZS:

32 END =structure:;

33 =

MName ;aplgeat 1 ! ! 1 ! ! 1 1
B s uo 3 M M M M FEE M E W D &
% b uo 2 b 3 X 4 A 5 X 6 A 4

cin BO |

caut 1] |_| |
s uo BOEED: ¢S 4EE:SE R EE) 4 T D 8 &

The CASE Statement
The CASE statement plays a role in sequential code similar to that played by the WITH-SELECT-WHEN
statement in concurrent code. The syntax for the CASE statement is:
CASE expression IS
WHEN valuel => assignments;
WHEN value2 => assignments;

END CASE;

7 Segment Display Driver Example

Implement a 7 Segment Plus decimal Active Low Display Driver using the case statement. The input will be a
4 bit binary number. The output will be the segments of the 7 Segment Plus Decimal display. Assume the
Decimal place of the display is not used.

2 library ieee;

& use ieee.std logic 1le4.all;

4 use ieee.5td:logic:arith.all;

&

6 @Eentity sevensegmentdriver 1=

7 —| port{

O digit : in std logic wector (3 downto 0); -- Result
9 segments : out std logic wvector (7 downto O)
10)i - -

11 end sevensegmentdriver:

12

13 Earchitecture arc of sevensegmentdriver is

14 Ebegin

15 —| process (digit)

1a begin

17 = case digit is

18 when "0000"™ =» segments<="11000000"™;
18 when "0001"™ =» segments<="11111001";
20 when "0010"™ =» segments<="10100100";
21 when "0011™ => segmencs<="10110000™;
22 when "0100"™ =» segments<="10011001";
23 when "0101™ =i segments~="10010010";
24 when "0110"™ => gegments<="10000011";
25 when "O0111"™ => gegmentesL="11111000";
26 when "1000"™ =» segments<="10000000"™;
27 when "1001"™ => gegments<="10011000":
28 when others => segments<="11111111";
29 end case;

30 end process;

21 end arc;

32

12

