
1

EC313 - VHDL State Machine Example

One of the best ways to learn how to code is seeing a working example. Below is an example of a Roulette

Table Wheel. Essentially Roulette is a game that selects a random number between 0 and 32 by spinning a

wheel with a ball on it. When the wheel stops, whatever number the ball is on is the random number that was

selected. Essentially we have a machine with 2 states. One is waiting for the user to Spin the wheel. The

second is the wheel is spinning. The process can be seen in the State Diagram below.

 SPIN_KEY=0

 0 1

 WAITING SPINNING

 --------------------- ---------------------

 LAST NUMBER SPIN EFFECTS

 SPIN_TIMER=SPIN_TIME

Figure 1 – State Diagram

This state diagram shows that when in state 0, the Wheel is waiting for the user to press the Active Low

SPIN_KEY. While waiting, it displays the last number that the ball land on. Once the SPIN_KEY is pressed

the state changes to the Spinning state and outputs SPIN EFFECTS. For our purposes, the SPIN EFFECTS will

be a random number between 0 and 32 that changes every fraction of a second. We want to simulate the time it

takes for the wheel to spin so we initialize a timer SPIN_TIMER to zero. While in the SPIN state, the timer

constantly increments. When the timer SPIN_TIMER reaches a predefined value SPIN_TIME, the wheel stops

spinning and transitions to the WAITING state. The process then repeats.

It is important to identify our inputs and outputs. For our Roulette wheel, they are shown in Table 1. Note that

while the output of the Roulette wheel will be two 4 bit binary numbers, we desire them to be displayed on the 2

seven segment displays HEX5 and HEX4 of the Altera Board. This will be done by using a BCD to 7 Segment

Display Driver.

 Roulette Wheel I/O Description

INPUTS RESET Button – Active Low SW(0)

SPIN Button – Active Low SW(3)

CLOCK – 50 Mhz Clock Signal – CLOCK_50

OUTPUTS DIGIT1 – 4 bit binary number representing the first digit of the number the ball landed on.

DIGIT0 – 4 bit binary number representing the second digit of the number the ball landed on.

Table 1 – I/O for Roulette Wheel

This project was implemented using three VHDL files. The file listings are shown in Figures 2 through 7. The

first file is just a top level entity that maps the signals from the physical inputs and outputs to the appropriate

signal of the Roulette wheel and the 7 Segment display driver. The second file is the Roulette wheel itself. The

third file is the 7 Segment display driver.

2

Figure 2 – Complete listing of roulette.vhdl

Figure 3 – LIBRARY and ENTITY sections.for roulettewheel.vhdl.

3

Figure 4 – Part 1 of 1
st
 ARCHITECTURE Section for roulette.vhdl

4

Figure 5 – Part 2 of 1
st
 ARHITECTURE Section of roulettewheel.vhdl

Figure 6 –2
ND

 ARHITECTURE Section of roulettewheel.vhdl

5

Figure 7 – Seven Segment Display Driver

It is important to note that this is one implementation of the Roulette wheel. There are many different ways that

you can implement any system. Some ways are better than others. If you think there is a better way to

implement this system, there is a good chance you are correct. Try it or ask an expert. In the meantime, there

are several things you can learn to do by examining this code. They include:

 1) How to implement a State Machine

2) How to instantiate an Entity

3) How to create and use a delay timer.

 4) How to generate a random number based on a key press and the clock.

 5) How to utilize the DE2 board standard PIN assignments.

 6) How to alter the standard clock rate.

 7) Others?

Finally, there are three important rules that you must follow when using the process statement.

 1) A signal/variable should only be assigned a value within a single PROCESS/IF statement. This is

why the spinstatereset variable is used in line 40 of Figure 4 instead of just setting spintimer

to zero.

 2) A signal/variable can not be dependent on multiple clocks(events).

 3) Each process should contain both an Asynchronous and Synchronous section as illustrated in lines 35

through 54.

