EC313 - VHDL State Machine Example

One of the best ways to learn how to code is seeing a working example. Below is an example of a Roulette
Table Wheel. Essentially Roulette is a game that selects a random number between 0 and 32 by spinning a
wheel with a ball on it. When the wheel stops, whatever number the ball is on is the random number that was
selected. Essentially we have a machine with 2 states. One is waiting for the user to Spin the wheel. The
second is the wheel is spinning. The process can be seen in the State Diagram below.

SPIN_KEY=0

1
SPINNING

0
WAITING

SPIN_TIMER=SPIN_TIME
Figure 1 — State Diagram

This state diagram shows that when in state 0, the Wheel is waiting for the user to press the Active Low
SPIN_KEY. While waiting, it displays the last number that the ball land on. Once the SPIN_KEY is pressed
the state changes to the Spinning state and outputs SPIN EFFECTS. For our purposes, the SPIN EFFECTS will
be a random number between 0 and 32 that changes every fraction of a second. We want to simulate the time it
takes for the wheel to spin so we initialize a timer SPIN_TIMER to zero. While in the SPIN state, the timer
constantly increments. When the timer SPIN_TIMER reaches a predefined value SPIN_TIME, the wheel stops
spinning and transitions to the WAITING state. The process then repeats.

It is important to identify our inputs and outputs. For our Roulette wheel, they are shown in Table 1. Note that

while the output of the Roulette wheel will be two 4 bit binary numbers, we desire them to be displayed on the 2
seven segment displays HEX5 and HEX4 of the Altera Board. This will be done by using a BCD to 7 Segment

Display Driver.

Roulette Wheel 1/0 Description

INPUTS | RESET Button — Active Low SW(0)

SPIN Button — Active Low SW(3)

CLOCK - 50 Mhz Clock Signal - CLOCK 50

OUTPUTS | DIGIT1 — 4 bit binary number representing the first digit of the number the ball landed on.

DIGITO — 4 bit binary number representing the second digit of the number the ball landed on.
Table 1 — I/O for Roulette Wheel

This project was implemented using three VHDL files. The file listings are shown in Figures 2 through 7. The
first file is just a top level entity that maps the signals from the physical inputs and outputs to the appropriate
signal of the Roulette wheel and the 7 Segment display driver. The second file is the Roulette wheel itself. The
third file is the 7 Segment display driver.



56

W =] & N b L RS

e
TS T N )

librar

v ieee;

use ieee.std logic 1164.all;

Eentity roulette is

= port
= —— The following signals allow use of the most commonly used
—— Inputs and outputs from the Altera DE2 board when importing
—— pin assignments from the DEZ.gsf file.
key : in std logic vector (3 downto 0); -- Pushbuttons
sw : in std_logic wector (17 downto 0): -- Toggle Switches
ledr out std logic vector (17 downto 0); -- Red LED=
ledg out std logic_vector (8 downto 0); —— Green LED=2
hex0 out std logic vector (7 downto 0); —- HEX0 7 Segment Display
hexl out std logic vector (7 downto 0); —- HEX1 7 Segment Display
hex2 out std logic vector (7 downto 0); —-- HEX2 7 Segment Display
hex3 out std_logic_vector (7 downto 0); —- HEX3 7 Segment Display
hex4 out std logic vector (7 downto 0); —- HEX4 7 Segment Display
hex5s out std logic vector (7 downto 0); —- HEX5 7 Segment Display
hexé out std logic vector (7 downto 0); —-- HEX6é 7 Segment Display
hex7 : out std logic_vector (7 downto 0); —— HEX7 7 Segment Display
gpio 0O inout std logic wector (35 downto 0); -- Expansion Header 0
gpio_ 1 inout std logic wector (35 downto 0); -- Expansion Header 1
clock 50 in =td_logic -- 50 Mhz Clock Pulse
)i
end roulette:
Earchitecture arc of roulette is
gignal digitl, digitco std logic_ vector(3 downto 0);
Ebegin
——- Imstantiate the roulette wheel
= ul: entity work.roulettewheel (single() port map
spin=>key (3},
reset=>key (0),
digitl=>digitl,
digitO=>digit0,
clock=>clock_50
)i
—-— Imstantiate the seven segment driver for first digit
= u2: entity work.sevensegmentdriver (arc) port map
digit=>digitl,
segmenta=>hexs
)2
—— Imnstantiate the seven segment driver for second digit
= u3: entity work.sevensegmentdriver(arc) port map |
digit=>digit0,
segments=>hexd
)i
-- Map inputs to Led's so we can verify they are pressed
ledg (0)<=key(0):
ledg(6)<=key(3);
-— Map other wvalues to LED's for troubleshooting
ledr (3 downto 0)<=digitO;
ledr (7 downto 4)<=digicl;
ledg (8)<=clock 50;
end arc;
Figure 2 — Complete listing of roulette.vhdl
—-— Create a Roulette Wheel
library iesee;
use ieee.std logic 1164.all;
use ieee.std logic_arith.all:;
Eentity roulettewheel is
= rort |
spin in =td_logic; —- Active Low signal tells wheel to spin
reset in std logic; -- Active Low signal tells all to reset
digitl, digito out std loglc_wector (3 downto 0); -- Result
clock in std logic

)y

end roulettewhesl:

Figure 3 — LIBRARY and ENTITY sections.for roulettewheel.vhdl.

2



16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
]
44
chE
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
(1
a7
68
69
T0
Tl
T2
3
T4
S
TE
77

Earchitecture singlel of roulettewheel is
—— Define some constants
constant MaXSPINTIME : integer := 100;
constant SPINTIME : integer := 10; -- S5et constant spin time
= —— The following walues are used among multiple process's
—— internal to the roulette wheel.
signal prstate @ std logic ; -- Present state only neesds 1 bic
-— Its either spinning or not
signal slowedclock : std_logic:
gignal spinstatereset : std logics
ghared wvariable randomnumber : integer range 0 to 32!
ghared wvariable randomnumbervector : std logic wvector (7 downto Q0):
ghared wvariable spintimer : integer range 0 to MAXSPINTIIME:

Ebegin

= —— If not already spinning and spin button is pushed then
—— transition to the spin state.

= stateproc ! process (clock, reset)
begin

| —-— & process should be broken into two sections

—— 1) Asynchronous (ie - BReset/Initizlization)
—-— 2) Synchronous (ie — Clocked Cperations)
| if reset='0"' then —-- This is the Asyncronous Part
prstate<='0";
spinstatereset<="'0";

= elsif clock='1l'" and clock'ewvent then
—— This=s i=s the Syncronous part
—| if =spin='"0"' and pr=tate='0"' then
—| —— The player =spins the wheel =o

—— we change the state to the Spin state.
pretated="1";
—| el=sif prstate='1l' and spintimer=SPINTIME then
—| —— What to do when =pin state is over?
—— Change back to the Wait =state
pretated="0";
= else
spinstatereset<="1";
end if;
end if;
end process;

—— Entered spin State process

= spinstateproc @ process (prstate, slowedclock )
begin
-— What to do when first entering the spin state
= if spinstatereset="'0' then

digitl<="0000";
digicO0<="0000";

zpintimer:=0; -- szet timer for spin cycle
= el=if =lowedclock='l' and =lowedclock'ewvent then
=2 if prstate='l' then -- What to do while in =pin =tate

—— While spinning update random number from timer
spintimer:=spintimer+l;

= if spintimer>=MAXSPINTIME then
spintimer:=0;
end if;

digitl «= randomnumbervector (7 downto 4);
digit0 «= randomnumbervector (3 downto 0);
end if;
end if;

end process;

Figure 4 — Part 1 of 1 ARCHITECTURE Section for roulette.vhdl



79 —— Process to generate a random number between 0 and 32

80 - randomnumberproc: process (clock)

81 wariable l=sdofrand : integer range 0 to 9;

82 begin

83 = if clock='l' and clock'event then

84 = —— Increment random number every clock cycle

85 —— Randomness comes by locking in value when key is pressed.
86 randomnumber : =randomnumber+1;

87 —— Determine 10'= place digit.

88 B if randomnumber>32 then

89 randomnunmber:=0;

a0 end if;

91 = if randomnumber >= 30 then

92 randomnumbervector (7 downto 4):="0011";

93 lzdofrand:=randomnumber-30;

94 B elsif randomnumber >=20 then

95 randomnumbervector (7 downto 4) :="0010";

96 lsdofrand:=randomnumber-20;

87T = elsif randomnumber >=10 then

ag randomnunmbervector (7 downto 4) :="0001";

a3 lzdofrand:=randomnumber-10;

100 = else

101 randomnumbervector (7 downto 4) :="0000";

102 lzdofrand:=randomnumber;

103 end if:

104 —— Determine 1'=s place digit

105 = case lsdofrand is

106 when 9 => randomnumbervector (3 downto 0) :="1001";
107 when 8§ => randomnumbervector (3 downto Q) :="1000";
108 when 7 => randomnumbervector (3 downto 0) :="0111";
109 when 6 =% randomnumbervector (3 downto :="0110";
110 when 5 =% randomnumbervector (3 downto ="0101";
111 when 4 => randomnumbervector (3 downto t="0100";
112 when 3 => randomnumbervector (3 downto Q) :="0011";
113 when 2 =» randomnumbervector (3 downto :="0010";
114 when 1 =% randomnumbervector (3 downto t="0001";
11s when 0 = randomnumbervector (3 downto 0) :="0000";
116 end case;

117

118 end if:

119 end process;

120

121 —— Proces= to generate a clock with a =maller frequency

122 = slowedclockproc: process (clock)

123 wvariable slowedclocktimer : integer range 0 to 50e6;

124 begin

125 —— If Positive Edge of Clock then add one to counter

126 = if clock='l' and clock'event then

127 slowedclocktimer:=slowedclocktimer+1;

128 = if =zlowedclocktimer=le6 then

125 slowedclock<=not slowedclock;

130 slowedclocktimer:=0;

131 end if:

132 end if;

133 end process;

134

135 end singlel;

Figure 5 — Part 2 of 1 ARHITECTURE Section of roulettewheel.vhdl

137 Harchitecture doubled of roulettewheel is
138 HEbegin

138 = —— Some Roulette wheels have 2 zeros. That type of wheel
140 —— could be implemented here.
141 end doubklel;

Figure 6 —2"° ARHITECTURE Section of roulettewheel.vhdl



2 library ieee;

3 use ieee.std logic 1164.all:

4 use :i.eee.std:lc:gic:arith.all:

3

& EEentity sevensegmentdrlver 1S5

7 = Dort

] digit i in std logic_wector (3 downto 0); -- Resuls
9 segments : out std logic vector (7 downto 0)
10 )z - B

11 end sevensegmentdriver;

12

13 Earchitecture arc of sevensegmentdriver is
14 Ebegin

15 = process (digit)

16 begin

17 = case digitc is

18 when "0000" => segments<="11000000";
19 when "0001"™ =» segments<="11111001";
20 when "0010" => segments<="10100100";
21 when "Q011" => Segmencs<="10110000";
22 when "0100" =» segments<="10011001";
22 when "0101"™ =3 segments<="10010010";
24 when "0110" =% segments<="10000011";
a5 whan "01311" = egmente<="11111000";
28 when "1000" => segments<="10000000";
27 when "1001" = segments<="10011000":
28 when others => segments<="11111111";
23 end case;

30 end process;

31 end arc:

32

Figure 7 — Seven Segment Display Driver

It is important to note that this is one implementation of the Roulette wheel. There are many different ways that
you can implement any system. Some ways are better than others. If you think there is a better way to
implement this system, there is a good chance you are correct. Try it or ask an expert. In the meantime, there
are several things you can learn to do by examining this code. They include:

1) How to implement a State Machine

2) How to instantiate an Entity

3) How to create and use a delay timer.

4) How to generate a random number based on a key press and the clock.
5) How to utilize the DE2 board standard PIN assignments.

6) How to alter the standard clock rate.

7) Others?

Finally, there are three important rules that you must follow when using the process statement.

1) A signal/variable should only be assigned a value within a single PROCESS/IF statement. This is
why the spinstatereset variable is used in line 40 of Figure 4 instead of just setting spintimer
to zero.

2) A signal/variable can not be dependent on multiple clocks(events).

3) Each process should contain both an Asynchronous and Synchronous section as illustrated in lines 35
through 54.



