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1.0 Buck Converter Operation

A power electronic converter uses semiconductor devices to transform power from one
form (DC or AC) into another form (DC or AC). It accomplishes this by causing the
circuit topology to change by virtue of turning ON and OFF the semiconductor devices.
A buck converter is a specific type of dc-dc power electronic converter whose goal is to
efficiently step down DC voltage to a lower level with minimal ripple. Practical
applications are illustrated in Figure 1.1 where, for example, a buck chopper might
interface between the varying output voltage of a storage battery and a sensitive piece of
electronics such as a microprocessor. Typically the buck converter employs feedback to
regulate the output voltage in the presence of load changes. This improvement in
performance over voltage dividers and regulators comes at the cost of additional
components and complexity. In the remainder of this handout, we will examine the
characteristics of the buck chopper and derive relationships and tools necessary to
properly specify the components required to implement a desired design.

Figure 1.1: Potential Buck Chopper Applications
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Example 1.1: Consider an application that requires 0-100mA at 5V. Assume that you
only have access to a +15V power supply. Let’s consider 3 potential solutions.

Solution #1: Voltage Divider
Consider that we design the following voltage divider circuit, where the desired
maximum load is in essence a 5 /100 50V mA   resistor. For smaller load currents, the
equivalent resistor will be larger.

The design shown achieves 5V across the load for the maximum load current
requirement. As the load current drops, the output voltage will increase to 5.36V at no
load (0A). Thus there are two issues with the voltage divider: (1) for a changing load, you
cannot always get what you want and (2) the divider resistors must be smaller than the
load resistance to ensure that the output voltage does not change significantly with load.
These issues manifest themselves in an efficiency quandary. KVL reveals that there must
be 15V – 5V = 10V across the 10 resistor and, therefore, we are drawing 1A from the
15V supply. Thus our efficiency is a paltry

 
 

5 100 0.5
100 100 100 3.33%

15 1 15
out

in

V mAP W

P V A W
       

We are not effectively using our input voltage energy. In fact we are wasting

 
2

1 10 10A W  in the one resistor and  
2

5 / 5.56 4.5V W  in the other. Let’s

consider a more elegant solution

Solution #2: Linear Voltage Regulator
We can implement the following circuit design using an integrated circuit chip.
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The LM317 works by establishing 1.25V across the 120 resistor, hence

120 1.25 /120 10.4I V mA   . With zero current leaving the bottom of the chip, this

means that there is 10.4 360 3.75mA V   across the bottom resistor, so that there is
always 1.25V + 3.75V = 5V across the load (within the current capability of the chip).
We can establish the output current of the chip using KCL:

317, 100 10.4 110.4outI mA mA mA  

Then applying KCL to the entire LM317 chip, the input current must be the same or

317, 317, 110.4in outI I mA  . We can then calculate the efficiency as

 
 

5 100 0.5
100 100 100 30.2%

15 110.4 1.656
out

in

V mAP W

P V mA W
       

Thus we are still inefficiently using the power supply energy and wasting
1.656 0.5 1.156W W W  in the chip and resistors. This leads us to the final solution.

Solution #3: Buck Chopper
Assume that we will learn that a typical dc-dc converter efficiency is in the range of 85-
95%. Let’s assume here that we can achieve 92%, how does this impact our system?

We can determine the required input power from

0.5
0.543

0.92
out

in

P W
P W


  

Thus we are only “wasting” 0.543W - 0.5W = 0.043W and the required input current has
dropped to / 0.543 /15 36.2in in inI P V W V mA   . Had our input source been a battery,

then we would be drawing far less current with this solution, implying that we would be
increasing the battery life.

So now that we have the context of why we currently do not have a good way of
efficiently converting to a lower DC voltage, we need to dig into the details of how a
buck chopper accomplishes this!
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The buck chopper circuit contains semiconductor switches (think transistors and diodes)
that will enable us to “chop” up a given voltage to create a waveform with a new and
controllable average value. To explain how this happens, consider the circuit shown in
Figure 1.2 where we have two ideal (zero voltage drop) switches 1S and 2S . The circuit

is controlled in a periodic fashion as shown in Figure 1.3 where SWT is called the

switching period. Part of a switching cycle switch 1S is closed while 2S is open

( 2S INV V ); the remainder of the cycle 2S is closed while 1S is open ( 2 0SV V ).

Figure 1.2: Buck Chopper Switch Building Block

VIN

0V
t

TSW

TS1 TS2

VS2

Figure 1.3: Output Voltage for Figure 1 Circuit

The average value of 2SV in Figure 1.3 is found from

1 2
2, 2

0

01
( )

SWT

S IN S
S ave S IN

SW SW

T V T
V V t dt DV

T T


   (1.1)

In Equation (1.1) we have introduced the “duty cycle” D as being the ratio of the switch

1S ON-time ( 1ST ) to the switching period ( SWT ). The 2SV voltage waveform is attractive

in that we can regulate the average value by changing D, but the large ripple or voltage
variation would be unacceptable for most sensitive electronic applications. As a
consequence, we would like to “filter” this waveform to extract the average value (DC
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component) while attenuating the fundamental (
1

SW

SW

f
T

 ) and its harmonics ( 2 SWf ,

3 SWf , 4 SWf , …).

Example 1.2: Given the following “chopped” waveform (centered for your convenience),
establish the first three terms of the Fourier series.

We can observe that the waveform has even symmetry (so the Fourier series will only

contain cosines) and the period is given by  40 20 60SWT s s s      . This

corresponds to a fundamental frequency of 1/ 60 16.7s kHz  . The DC value is found

from

 
30 20

20

2, 2 0
0 0

2 2 2
( ) 15 15 10

60 60 60

s s
s

S DC SV V t dt dt t V
s s s

 


  
    

The fundamental, second harmonic, and third harmonic amplitudes are found from

2020

2,1

0 0

4 2 60 60 2
15cos sin 8.27

60 60 60 2 60

ss

S

s
V t dt t V

s s s s


  

    

   
       

   


2020

2,2

0 0

4 2 60 60 2
15cos 2 sin 2 4.13

60 60 60 4 60

ss

S

s
V t dt t V

s s s s


  

    

   
        

   


2020

2,3

0 0

4 2 60 60 2
15cos 3 sin 3 0

60 60 60 6 60

ss

S

s
V t dt t V

s s s s


  

    

   
       

   


Thus, we can write the Fourier series for this waveform as

   2 10 8.27 cos 2 16.7 4.13 cos 2 33.3 ...SV V V kHz t V kHz t        

This exposes that the waveform has a DC component, the fundamental at 16.7kHz, and
the second harmonic at 33.3kHz. Due to the waveform symmetry, the third harmonic is
not present. The fourth harmonic at 66.7kHz has an amplitude of 2.07V. The key here is
that we want to filter these signals out so that only the DC component remains.
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This requires a low-pass filter and we propose the circuit shown in Figure 1.4 where R
represents the applied load. Clearly the circuit is low-pass since at low frequencies
( 0  ) the inductor ( L ) appears as a short and the capacitor (1/ C ) is an open and
the input passes through to the output. At high frequencies (  ), the inductor looks
like an open and the capacitor a short and the input is blocked from the output.

Figure 1.4: Low-Pass Filter within a Buck Chopper

The transfer function for this circuit is given by

2 22

1
( ) 1

1 1( ) 1

out

S

V s LC
LV s s s LCs s

RC LC R

 

   

(1.2)

If we assume that the denominator roots are complex (the usual situation), the
approximate straight-line frequency response magnitude characteristic will have a corner

frequency at
1

o
LC

  as shown in Figure 1.5. The fundamental switching frequency

(in rad/s) relates to the switching period and switching frequency (in Hz) by

2
2SW SW

SW

f
T


   (1.3)

Note in Figure 1.5 that it is desirable for the switching frequency to appear a couple of
decades higher than o so that the ripple in 2SV is sufficiently attenuated. In this

example, the ripple at SW is reduced by -80dB or by a factor of 41 10 absolute. What

this is starting to uncover is that there is a direct relationship between the choice of
switching frequency and the selection of L and C.
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Figure 1.5: Approximate Frequency Response Magnitude Plot for Buck Output Filter

Now the filter discussion is useful in uncovering that 1/SW LC  , but it does not

provide guidance in how to divide up the contributions of L and C nor does it concretely
link to desired figures of merit like output ripple voltage or inductor ripple current. Thus
we push onward by analyzing the combination of the circuits from Figures 1.2 and 1.4 as
shown in Figure 1.6. Here we have replaced switch 2S by an ideal diode. Thus when

switch 1S opens, any positive inductor current will clamp the diode ON and it will

remain on as long as positive current can flow or up until 1S recloses (thereby reverse

biasing the diode and turning it OFF).

Figure 1.6: Buck Chopper
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The preliminary analysis of this circuit utilizes the following assumptions

 C is large enough that the output voltage ripple is small relative to its
average value;

 L is large enough to ensure that the inductor current stays positive for the
switching period (this is referred to as continuous conduction mode or
CCM) – this ensures that when the switch is OFF, the diode must be ON;

 All components are initially assumed ideal – we will eventually find that

1S , 2S , L and C all have parasitic elements that must be considered in

properly identifying parts;
 The circuit is in the steady state – implying that all waveforms are in fact

periodic, ensuring that they have the same value at the beginning and end
of a switching period.

Owing to the second assumption, the circuit will have two admissible states as shown in
Figure 1.7: switch closed and diode OFF or switch open and diode ON. Next we will use
the first assumption to deduce the wave-shape of the inductor current. First let’s re-
express the amount of time that the switch and diode are conducting in terms of the duty
cycle D

1
1

S
S SW SW

SW

T
T T DT

T
  (1.4)

 2 1 1S SW S SW SW SWT T T T DT D T      (1.5)

If the output voltage ripple is very small, then we can assume that the output voltage is
constant at its average value, ,out aveV . Thus when switch 1S is ON (Figure 1.7a) we can

use KVL to derive an expression for the inductor voltage

,

,

L ON

L IN out ave

dI
V L V V

dt
   (1.6)

a. 1S ON & 2S OFF b. 2S ON & 1S OFF

Figure 1.7: Two Valid Topological States for a Buck Chopper in CCM
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Since both INV and ,out aveV are constant, the derivative is a constant and we can replace it

by the “change” in current over the “change” in time. Thus (1.6) becomes

, ,L ON IN out ave

ON

I V V

t L

 



(1.7)

Substituting for the amount of time that 1S is ON (Equation (1.4)) and solving for the

change in current, we get

,

,

IN out ave

L ON SW

V V
I DT

L

 
   

 
(1.8)

Note that since ,out ave INV V , the current is linearly building during this interval as shown

in Figure 1.8. When switch 1S is OFF and the diode is conducting, the circuit shown in

Figure 1.7b governs and now the inductor voltage is given by

,

L ,V 0L OFF

out ave

dI
L V

dt
   (1.9)

Since we are still assuming that the output voltage is constant, the derivative is again
constant so we can rewrite (1.9) as

, ,L OFF out ave

OFF

I V

t L

 



(1.10)

Substituting (1.5) for the amount of time that the diode is assumed to be ON (Equation
1.5) yields

 ,

, 1out ave

L OFF SW

V
I D T

L


   (1.11)

Now the current is linearly decreasing (the derivative is negative) as shown in Figure 1.8.
For the circuit to be in the steady state and all variables periodic implies that the inductor
current must return to the same value at the end of the cycle (indicated here as minI ) or

mathematically that

, , 0L ON L OFFI I    (1.12)

If we substitute (1.8) and (1.11), we find that
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 , , 1 0IN out ave out ave

SW SW

V V V
DT D T

L L

 
   

 
(1.13)

After canceling L and SWT , we are left with

, , , 0IN out ave out ave out aveDV DV V DV    (1.14)

or simply that

,out ave INV DV (1.15)

which thankfully is what we found from our low-pass filter considerations. As shown in
Figure 1.8, the steady-state inductor current signal is triangular with the peak-to-peak
current designated by LI .

VS2

VIN

0V t

TSW

Imax

Imin

IL

0A

IL

t

IL,ave

IL
2

IL

2

IC t
+ +

- - -

0V Vcpp
Vc

DTSW

(1-D)TSW

Vout,ave

Figure 1.8: Steady-State Buck Chopper Waveforms Assuming CCM
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To correctly arrive at the capacitor current waveshape, first recall that the capacitor
current constitutive relationship is given by

C
C

dV
I C

dt
 (1.16)

If the capacitor current has an average value, then ,C aveV is not constant. Thus in the

steady state, it is necessary that , 0C aveI  (think of this as if the average capacitor current

was positive, then the capacitor would on average be charging to a higher voltage value).
Furthermore, by applying KCL at the output circuit node, it follows that

, , ,L ave C ave R aveI I I  (1.17)

Therefore

,

, ,

out ave

L ave R ave

V
I I

R
  (1.18)

We can then determine expressions for the maximum and minimum inductor current
values since we established (from 1.11 where that expression gives a negative value so
we flip the sign) that

 
 , , 1

1out ave out ave

L SW

SW

V V D
I D T

L Lf


    (1.19)

Thus

max ,
2

L
L ave

I
I I


  (1.20)

min ,
2

L
L ave

I
I I


  (1.21)

What does this all mean? Well, the average inductor current directly depends on the
applied load resistance and the desired output average voltage (as set by the duty cycle).
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A small value of R corresponds to a large value of average current and vice versa. The
inductor ripple current does not depend on the load resistance, thus once the switching
frequency is set, the ripple current is set as shown in Figure 1.9. We see something

interesting in Figure 1.9, as the load power drops ( ,L aveI  and R  ) the inductor current

will eventually hit zero while the diode is conducting, turning the diode off (before the
switch 1S turns ON). This will transition the circuit into the Discontinuous Conduction

Mode (DCM) and the nice steady-state linear relationship ,out ave INV DV no longer holds.

A typical DCM inductor current waveform is shown in Figure 1.10. Fortunately, a buck
chopper typically employs feedback control to compensate for component parasitics,
changes in load, and changes in the input so it will automatically find the proper D to
achieve the desired output voltage.

Figure 1.9: Inductor Currents in CCM for Varying Amounts of Load Resistance
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t

DTSW (1-D)TSW

IL

Figure 1.10: Inductor Current in DCM

The transition point between CCM and DCM is a useful point to derive. It occurs when

the minimum value of the inductor current just hits zero or min , 0
2

L
L ave

I
I I


   . If we

substitute (1.18) and (1.19), we come up with

, , (1 )
0

2

out ave out ave

SW crit

V V D

R f L


  (1.22)

We can solve this for the critical inductance ( critL ) value when the load resistance is the

largest value that we would like to maintain the converter in CCM and we find that

(1 )

2

big

crit

SW

D R
L

f


 (1.23)

Equation (1.23) offers one approach to designing the inductor value for the buck chopper.
The resistance bigR is given by

2
,out ave

big

crit

V
R

P
 (1.24)

Where critP is the output power level where you want your buck chopper to transition into

DCM. A smaller critP will lead to a larger L and a smaller inductor ripple. A larger value

of inductance will mean a physically larger inductor with more losses, which sounds
unattractive. But if one shoots for a larger critP so that L is smaller and the ripple current

is bigger, what is the downside? Well, we will find that this requires a larger capacitor
with more ripple current capability which sounds like there is an engineering tradeoff
afoot! Unfortunately equations (1.23) and (1.24) really do not illustrate this tradeoff so
we will have to figure out something better.
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Example 1.3: Given an ideal buck chopper with 20inV V and the following inductor

current waveform

Determine (a) the duty cycle and switching frequency, (b) the average output voltage, (c)
the circuit inductance, (d) the load resistance for the operating point pictured, and (e) the
load resistance that transitions the converter to discontinuous conduction mode.

a. The duty cycle is given by the ratio of ON time (ramp-up time) to switching
period. The switching frequency is the inverse of the switching period so

6
0.6

10

s
D

s




 

1
100

10
swf kHz

s
 

b. The ideal input/output relationship for a buck chopper is ,out ave inV DV thus

, 0.6 20 12out aveV V V  

c. We can use either (1.8) or (1.11). Rearranging (1.8) to solve for the inductance
yields

,

,

20 12
0.6 10 12

8 4

in out ave

sw

L ON

V V V V
L DT s H

I A A
 

   
          

d. The average value of the inductor current is in the center of the waveform, so it

follows that  , 4 8 / 2 6L aveI A A A   . Since the average capacitor current must

be zero, the average load current must equal the average inductor current and

,

,

12
2

6

out ave

out ave

V V
R

I A
   

e. The transition to DCM occurs when ,

4
2

2 2
L

L ave

I A
I A


   . This occurs when

the output resistance equals 12 / 2 6bigR V A  
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Example 1.4: Consider that we want to design a buck chopper that will step 24V down to
12V with a maximum output power of 100W. For a switching frequency of 40kHz,
investigate the change in design if (a) 10critP W or (b) 20critP W

a. First, we evaluate the required duty cycle , / 12 / 24 0.5out ave inD V V V V   , Next

we calculate the load resistance corresponding to the critical power

 
2

12
14.4

10
big

V
R

W
  

The critical inductance is then given by (1.23)

 1 0.5 14.4
90

2 40,000
critL H

Hz


  
 



The corresponding inductor ripple current is then found via (1.19) to be

 12 1 0.5
1.67

90 40
L

V
I A

H kHz

 
  



With proper design of the output capacitor, most of this ripple current will then
flow through the capacitor (so the output current ripple is small)

b. Repeating the design for a higher critical power yields

 
2

12
7.2

20
big

V
R

W
  

The critical inductance becomes

 1 0.5 7.2
45

2 40,000
critL H

Hz


  
 



which results in a new required inductor ripple current

 12 1 0.5
3.33

45 40
L

V
I A

H kHz

 
  



Thus, we see a tradeoff in specifying a higher value of critical power. The
required inductance is smaller (so it will be physically smaller) but the ripple
current must be larger (which will result in a larger required capacitance).
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Let’s next consider focusing in on the steady-state output voltage ripple CV shown in

Figure 1.8. Note that with the output voltage ripple assumed to be much smaller than its
average value, most of the inductor current ripple must go through the capacitor.

Because C
C

dV
I C

dt
 , when the capacitor current is positive, the capacitor voltage is

building and when the capacitor current is negative, the capacitor voltage is decreasing.
Since the capacitor current must have zero average value for the circuit to be in the steady
state, this implies that the area above zero must be the same as the area below zero. Since
the positive and negative capacitor current peaks have the same magnitude, we can
deduce that the capacitor current is positive for half of the switching period and negative
for the other half. By integrating the capacitor governing relationship we get that the
capacitor charge is equal to

C CQ C V   (1.25)

The change in charge while the current is positive is found by calculating the area under
the triangle whereas the change in voltage will be CppV as shown in Figure 1.8.

   
1 1

2 2 2 2
SW L

C Cpp

T I
Q base height C V

  
      

  
(1.26)

If we solve for the capacitance and replace the switching period by one over the
switching frequency, we get

min
8

L

SW Cpp

I
C

f V





(1.27)

This tells us that the smaller the ripple, the bigger the capacitance (which makes intuitive
sense). Like (1.23), equation (1.27) is encouraging in that both the critical inductance and
the minimum capacitance are inversely related to the switching frequency which is what
we deduced from our original filter analysis (a higher switching frequency can allow us
to have a bigger o , implying smaller values for L and C). Unfortunately (1.27) is not the

end of the story because by its name minC implies that it is the minimum permissible for

the value of ripple, but how much higher should we go and why? One might quickly
observe that more capacitance means more volume and more cost so don’t go any higher.
This ignores the fact that we also want our buck chopper to behave well under transient
conditions (changes in load or input) and we will find that the capacitance will intimately
impact this dynamic. Also, we will find that a key capacitor specification is the RMS
ripple current through it and that bigger capacitors have more ripple current capability.
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Example 1.5: Given the buck chopper design from Example 1.4a (where , 12out aveV V ),

if we impose a maximum output voltage ripple of 1% of the average value
( 0.01 12 120CppV V mV    ), determine the required capacitance.

From (1.27), we get

min

1.67
61

8 40 0.12

A
C F

kHz V
 

 

This is not a standard value of capacitance, so we would scale up to the next largest
standard value ( 68 F ). However, the story does not end here since it will be very

important that this capacitor be able to handle the expected 1.67A peak-to-peak ripple
current from the inductor. More on this in the next chapter.

OK, so to address the transient capability link to C, let’s consider a worst case scenario.
We are operating at maximum load, the inductor current is at its peak value, and we
disconnect the load resistance. The situation is illustrated in Figure 1.11. What happens?
When the load becomes disconnected (or R gets very big), the inductor current cannot
change instantaneously and so all of it will flow through the capacitor, including its
average value. This will tend to increase the capacitor voltage. As the voltage builds
beyond ,out aveV , the control algorithm will reduce D and in this case most likely drive it to

zero (it does not benefit the system at this point to close the switch 1S since this only

dumps more energy into the inductor; energy which will need to be dissipated
somewhere). Thus with 1S open, the diode conducts until LI drops all the way to zero.

We can estimate the change in capacitor voltage by performing an energy balance
between the two conditions.

, ,before dropload after droploadE E (1.28)

Substituting gives

 
22 2

, ,

1 1 1

2 2 2
out ave pk out ave transCV LI C V V    (1.29)
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Figure 1.11: Drop Load Scenario

Solving for C in (1.29) yields

   

2

2 , ,max

2 22 2
, , , ,

2
L

L ave
pk

out ave trans out ave out ave trans out ave

I
L I

LI
C

V V V V V V

 
 

  
     

(1.30)

Yikes what is (1.30) saying? Well transV is approximately how much above ,out aveV that

we are willing to allow the output voltage to rise if we go from 100% power out to 0%
power out. Obviously choosing transV equal to zero yields infinite capacitance and an

impractical solution. If we choose ,0.4142trans out aveV V  (essentially a 41% overshoot),

the choice of capacitance will balance the energy between the inductor and the capacitor,
and it is an interesting compromise value that is typically much larger than the value
found in (1.27). A more thorough tradeoff analysis requires a detailed dynamic
simulation, including the feedback control, which is beyond our current mission!
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Example 1.6: Considering examples 1.4a and 1.5, let’s consider that we wish to assess
how much the capacitor value must change to balance the peak energies in the inductor
and capacitor.

The peak inductor current is found using (1.20)

,max ,

100 1.67
9.17

2 12 2
L

L L ave

I W A
I I A

V


    

The energy in the inductor is then found from

 
22

,max ,max

1 1
90 9.17 3.784

2 2
L LE LI H A mJ    

If we set this value to the maximum energy in the capacitor (ignoring the small value of
ripple)

 
22

,max ,

1 1
12 3.784

2 2
C out aveE CV C V mJ    

We get a required capacitance of 52.6 F (or less than the value required for assuring

our steady-state ripple, 61 F ). Thus in this case, the steady-state requirement is more

restrictive than the transient requirement. The ability to handle the inductor ripple current
will ultimately drive the final selection of capacitance.

OK, we have argued that (1.23) (the equation for critL ) and (1.24) (the equation for bigR )

are not particularly insightful engineering formulas to determine inductance and have
now found a formula for capacitance that depends on L, so matters are not improving.
Let’s make an argument based on the following observation: the ripple current does not
depend on the load resistance but it does depend on L. So let’s propose that the ratio of
the ripple current to the maximum average load current might make for an interesting
parameter to consider.

, ,max

L

L ave

I
r

I


 (1.31)

The inductor ripple current is related to the inductance via (1.19) so we can “massage”
this expression to place it in terms of the ripple ratio r

   , , ,max ,

, ,max , ,max

1 1out ave L ave out ave

L SW L ave SW L ave

V D I V D
L

I f I rf I

 
  


(1.32)



20

The inductor peak energy will relate to the volume of inductor required. This can be
quantified by

  2

,2
, , , ,max

, ,max

11 1

2 2 2

out ave L
L pk L pk L ave

SW L ave

V D I
E LI I

rf I

  
   

 
(1.33)

We can rewrite this in terms of the ripple ratio ‘r’ as

   

2

2

, ,2
, , ,max , ,max

, ,max

1
1 11 1 2

1
2 2 2

out ave out ave

L pk L ave L ave

SW L ave SW

r
V D V Dr

E I I
rf I f r

 
        

 
(1.34)

This expression tells us how the energy in the inductor will vary with a given value of
ripple ratio. The other variables in (1.34) are generally specified (output voltage and
maximum load) while the switching frequency will need to be selected based on other
factors. If we plot the normalized version of (1.34) for a range of 0 2r 

2

, ,

1
2

L pk norm

r

E
r

 
 

  (1.35)

we get the plot shown in Figure 1.12. An r = 2 implies that the rated load condition is at
the boundary of DCM. Note that below r = 0.2, the required inductor energy (think size
of inductor) increases very quickly. If r is small, the ripple current is small which
necessitates a large inductance and therefore a large peak energy capability. Beyond r =
0.6, the normalized energy decreases rather slowly, so we are not gaining much more
advantage. We will next see that there is an added disadvantage to designing with a larger
value of ‘r’.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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22

r (ripple ratio)

Normalized Inductor Energy

Figure 1.12: Plot of Normalized Inductor Energy versus the Ripple Current Ratio
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Why are larger values of ‘r’ unattractive? Let’s start with the capacitor current and
determine its RMS value. If we consider the signal CI shown in Figure 1.8, we must find

the RMS value of a symmetrical triangle wave. Omitting the details, this value equals its
peak value divided by the square root of three, or

,

/ 2

3 3 12

pk L L
C rms

I I I
I

 
   (1.36)

If we would prefer to write this in terms of the ripple ratio
, ,max

L

L ave

I
r

I


 , then we get

, ,max

,
12

L ave

C rms

I
I r (1.37)

This implies that we suffer a penalty in selecting r too large – a larger capacitor ripple
requirement which will mean more capacitance or more capacitors.

Thus if r < 0.2, the ripple is small, so the inductance is large and since for transient
concerns we try to match the capacitor energy to the inductor energy, this implies a large
value of capacitance. For r > 0.6, the inductor energy goes down more slowly and the
capacitor ripple current requirement linearly increases, implying that more capacitance is
required. Therefore we postulate that an “attractive” range for the ripple ratio is
0.2 0.6r  . This corresponds to a critical power range of 0.1 0.3rat crit ratP P P  . By

investigating this range across the design space (the set of reasonable parameter values
and components) and evaluating a figure of merit like efficiency, size, or cost, we can
then determine a “best” choice for ‘r.’ MATLAB or EXCEL are excellent programs that
can facilitate this “spread sheet” approach to design!

Our analysis thus far has assumed ideal components, switches that have zero voltage
drops. If INV and outV are above 50V, this is not a bad assumption. But what if the input

and output voltage are less than 12V? Then a 0.5V-1V switch drop will start to influence
the calculations. As a result, let’s incorporate these voltage drops in our analysis and
reformulate our expression for critL . The analysis proceeds as before using the circuits

shown in Figure 1.13.

The change in inductor current while the switch is closed (Figure 1.13a) is found to be

,

,

IN SW out ave

L ON SW

V V V
I DT

L

 
  (1.38)

where SWV is the assumed constant voltage drop across the switch. Similarly using Figure

1.13b for when the diode is conducting, we can find the change in inductor current to be
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 ,

, 1F out ave

L OFF SW

V V
I D T

L

 
   (1.39)

where FV is the assumed voltage drop across the diode. In the steady state we can assert

that

, , 0L ON L OFFI I    (1.40)

which upon substituting and simplifying yields

,out ave F

IN SW F

V V
D

V V V




 
(1.41)

(a) (b)
Figure 1.13: Buck Chopper Analysis with Switch and Diode Replaced by Voltage Drops:

(a) Switch Closed, Diode OFF; (b) Switch Open, Diode ON

Since the change in current shown in Equation (1.39) is negative, we can flip the sign and
solve for the inductance as

  , 1out ave F

crit

L SW

V V D
L

I f

 



(1.42)

or finally in terms of the ripple ratio
, ,max

L

L ave

I
r

I




  ,

, ,max

1out ave F

crit

SW L ave

V V D
L

rf I

 
 (1.43)

Thus upon establishing estimates of the average switch and diode voltage drops, you can
use (1.41) and (1.43) to determine the critical inductance. As can be the case, if the input
voltage varies, then you will want to determine the worst case (largest) required
inductance. From (1.43), the inductance gets bigger when ‘D’ gets smaller. Therefore
from (1.41), ‘D’ gets smaller when the input is its largest value.
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Example 1.7: Consider that we want to re-design the buck chopper from Example 1.4
that steps 24V down to 12V with a maximum output power of 100W with a switching
frequency of 40kHz and 10critP W (r = 0.2). This time let’s assume that we have a

switch voltage drop of 1.8SWV V and a diode drop of 1.2FV V .

Equation (1.41) gives us an estimate of the new required duty cycle

12 1.2
0.564

24 1.8 1.2

V
D

V V V


 

 

which is slightly larger than the “ideal” analysis value of 0.5. We can then evaluate the
critical inductance using (1.43)

  12 1.2 1 0.564
86.3

100
0.2 40,000

12

crit

V V
L H

W

V


 

 

 

Here, we see that the inductance did not change appreciably (decreasing from the ideal

value of 90 H ). With the ripple ratio set to
, ,max

0.2 L

L ave

I
r

I


  . The inductor ripple

current must equal

, ,max

100
0.2 0.2 1.67

12
L L ave

W
I I A

V
     

as we had before. Thus, the sizing of the capacitor as performed in Example 1.5 would be
unchanged and the result in Example 1.6 would be slightly smaller since the value of L is
slightly smaller.

Example 1.8: Let’s explore how a design proceeds when the input voltage can change.
Let’s assume that we wish to design a DC-DC converter that will step a 12V battery
down to 5V. The terminal voltage of the battery can vary between 11V and 14V based on
the state of charge. The rated output power is specified as 15W. We are asked to use a

switching frequency of 20kHz and a ripple ratio of 0.2  /10 15 /10 1.5crit ratP P W W   .

The output ripple voltage should be no more than 1% of the average output voltage.
Establish values for the buck chopper inductance and capacitance. Assume that the
selected switch and diode have voltage drops of 0.3V and 0.5V, respectively.

OK, so the issue is which value of inV do we use in (1.41) to estimate the duty cycle. To

convince ourselves, let’s work through the calculations using both. Starting with the
minimum input voltage we get
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1

5 0.5
0.491

11 0.3 0.5

V V
D

V V V


 

 

The corresponding value of critical inductance is then found from (1.43)

  
,1

5 0.5 1 0.491
233

15
0.2 20,000

5

crit

V
L H

W

V


 

 

 

If we repeat for the larger value of input voltage, the new duty cycle is

2

5 0.5
0.387

14 0.3 0.5

V V
D

V V V


 

 

And the new critical inductance is

  
,2

5 0.5 1 0.387
281

15
0.2 20,000

5

crit

V
L H

W

V


 

 

 

So clearly, the worst-case design must occur at the higher input voltage which presents us
with a larger required inductance. The ripple current is fixed by the ripple ratio (or the

critical power level)  , ,max0.2 0.2 15 / 5 0.6L L aveI I W V A      . Thus we can then

estimate the minimum capacitance for steady-state ripple from (1.27)

 min

0.6
75

8 8 20 0.01 5
L

sw Cpp

I A
C F

f V kHz V



  

  

If we contrast this with equating the energies in the capacitor and inductor at rated power,
we get

 
 

22
,

22
,

281 3 0.6
146

5

crit L pk

out ave

L I H A A
C F

V V




 
  

So for transient reasons, we might like to choose a value closer to 150 F . Finally

though, we will learn in the next chapter that the capacitor must be able to handle the
inductor ripple current which is specified via the rms value found in (1.36)

,

0.6
173

12 12
L

C rms

I A
I mA


  


