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Objectives of Section 2

 Describe the most common means of producing magnetic fields in electric
machines

 Apply the right-hand rule to determine the direction of flux flow

 Relate the flux and flux density for uniform flux flow

 Apply Ampere’s Law for a magnetic circuit with an assumed flux path

 Relate flux density, field intensity and permeability

 Define a magnetic equivalent circuit and relate the magnetic quantities to their
electrical analogs

 Relate flux, reluctance and mmf for a magnetic equivalent circuit

 Explain why ferromagnetic materials are used to build electric machines

 Make calculations for magnetic circuits that do not contain an air gap

 Explain why we analyze circuits with air gaps

 Make calculations for magnetic circuits with an air gap
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2.0 MAGNETISM AND MAGNETIC EQUIVALENT CIRCUITS

There is no way to explore the operation of electric machines without discussing
magnetic fields. Our simplest experiences with magnetic fields are with magnets
attracting to some metal surfaces and with two magnets either attracting or repelling one
another. We will build from there. There are three basic ways to create a magnetic field:

1. A current-carrying conductor,
2. A permanent magnet,
3. A time-varying electric field.

Fortunately, the third does not directly pertain to our immediate discussion. For the
permanent magnet illustrated in Figure 2.1a, closed, continuous lines of magnetic flux
leave the North pole of the magnet and re-enter the South pole. We will soon see that
these lines of flux are analogous to current in our electrical circuits. Where the lines of
flux are dense is where the magnetic field is the strongest; where the lines are sparse is
where the magnetic field is weakest. The units of flux are the Weber (Wb), and we will
represent it with the symbol  (phi). The lines of flux for the current-carrying conductor

in Figure 2.1b are assigned by using Fleming’s Right Hand Rule: grasp the conductor
with the right hand with your thumb pointing in the direction of the current, your fingers
will curl in the direction of the magnetic field. By winding the conductor in a coil, as
depicted in Figure 2.1c, we notice that the resultant lines of flux resemble those of the
permanent magnet—a North pole at the top and a South pole at the bottom. Such a coil is
termed an electromagnet and is a key element in building an electric machine.

Figure 2.1: Lines of Magnetic Flux for (a) A Permanent Magnet; (b) Current-Carrying
Conductor; (c) Electromagnet

2.1 Magnetic Circuit Analysis without an Air Gap

We ultimately want to quantify the amount of torque that a motor develops or the level of
voltage that a generator produces. With these goals in mind, we need to build a library of
terminology and relationships that will enable us to characterize magnetic systems. In this
context, we will simplify a three-dimensional non-linear vector problem into a one-
dimensional linear circuit-equivalent problem (you are free to cheer). The magnetic field
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is generally quantified by the flux density ( B


) or simply B-field. We can calculate the
flux as being the surface integral of the flux density (think of this as integrating a rate of
flow through a surface, equation below). For uniform flux flow (the B-field is uniformly
distributed through the assumed surface), the nasty dot product and vector integration
(below) becomes simply the product of the magnitude of the B-field and the cross-
sectional area (A).

  BASdB




Achieving a large B-field is key to our efforts to realize practical forces in a machine.
The B-field is actually a vector quantity, having both direction and magnitude, and can be

expressed in units of Tesla (T), Gauss (G), or less frequently as 2/ mWb (we will use T).
A typical magnitude of B-field in a conventional electric machine is 1-2T. The Navy is
investigating super-conducting electric machines that may operate with B-fields between
4 and 6T (the goal here being lighter, more compact, high-power machinery).

Just as voltage is required to “push” current through an electric circuit, the field intensity
is the magnetic force that pushes the flux density through a magnetic circuit. The field
intensity, also referred to as the H-field, has units of A/m and is governed by Ampere’s
Law.

  enclosediLdH


This equation looks evil but it’s not. The circle in the integration symbol tells us that we
must consider a closed path. Consider the magnetic circuit depicted in Figure 2.2a. It
consists of a rectangular core and a coil of N turns wrapped about one of the legs (yes,
this will soon become an electric machine, trust me). If the core is made of
ferromagnetic material (such as iron, nickel, cobalt or some combination), it is
reasonable to assume that most of the flux stays in the core and little leaks out into the
air. Further, if we assume a mean path through the material adequately describes the flux
(Figure 2.2b) and that the field intensity only acts along that path (no bends around the
turns), then Ampere’s Law simplifies: the dot product becomes multiplication and the
integration becomes simply a summation over the various parts of the assumed path

NILHLHLHLHLH ironironironironxpathsx xiron  4321_ ,

As we march along the mean path through the core, we cut through each of the N turns of
the coil and thus, the enclosed current must be NI, where I is the coil current. The product
of turns and current is typically called the magneto-motive-force or simply, mmf. Given
the core dimensions listed in Figure 2.2b, Ampere’s Law yields

  mmfNILHLLLLH pathmeanironiron  _4321

This result tells us that for our assumed path the field intensity depends directly on the
current in the winding, but what about the flux and B-field? If the core material is
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Figure 2.2: Simple Magnetic Circuit Illustrating (a) Lines of Flux for Positive Current;
(b) Mean Flux Path

magnetically linear and isotropic (same properties in all directions, which iron is), then
we can relate B to H via the permeability which we can divide into a constant term, the

permeability of free space ( mHxo /104 7  ), and the relative permeability ( ironr ,

which is dimensionless).

ironoironriron HB  ,

The relative permeability of air and other materials such as wood is very close to one; the
relative permeability of ferromagnetic material is on the order of thousands or tens of
thousands – the plot thickens! If we substitute the permeability relationship into our
Ampere’s Law result, we get

NIL
B

pathmean

oironr

iron _

, 

Then replace the B-field by its flux relationship, Ampere’s Law yields
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NIL
A

pathmean

oironr

iron _

, 



Note, the cross-sectional area (A) in Figure 2.2 is the product xd . If we group the terms
that depend on the core geometry and material properties, we get

NI
A

L
ironironiron

oironr

pathmean
 

 ,

_

The reluctance (
A

L

oironr

pathmean

iron
 ,

_
 ) represents the material path’s opposition to flux

flow. It has units of inverse Henries. Thus, our result becomes

mmf 

This is Magnetic’s version of Ohm’s law: Reluctance times flux equals mmf. The mmf
is analogous to voltage. It pushes the flux through the path, where flux is similar to
current and must obey a comparable Kirchhoff’s Current Law. The reluctance represents
opposition to flux flow and is therefore analogous to resistance. Essentially, we applied
the concept of adding reluctances in series in the development above. Iron
(ferromagnetic) material is used in machines, because it has a high permeability
( 1, ironr ) and therefore a very low reluctance, meaning that it facilitates channeling

the flux, but channeling it where? Well, now we have to introduce an air gap.

The actual relationship between the flux density (B) and the field intensity (H) is a bit
more involved than that conveyed by ironoironriron HB  , . Consider the non-linear

characteristic depicted in Figure 2.3. Note that the actual characteristic does “saturate.”
A sample of ferromagnetic material contains regions called domains (think of these as
areas that possess a dipole moment (North and South poles), randomly distributed
through the material). As a progressively larger magnetic field is applied, more and more
of these domains align with this external field. Magnetic saturation occurs when no more
domains remain to align. Another important characteristic shown in Figure 2.3 is the fact
that ferromagnetic material exhibits hysteresis (this is the loop part of the characteristic).
This hysteresis becomes important when the field intensity varies with time (say, when a
sinusoidal current is applied to the coil so that the H-field is sinusoidal as well).
Hysteresis occurs because the magnetic domains exhibit a resistance to shift their
orientation. The area of the hysteresis loop is proportional to the amount of energy
required to shift the orientation of the domains. Thus, we seek ferromagnetic materials
with narrow hysteresis loops to minimize these losses. Further, we want to operate below
magnetic saturation (in the 2 to 2.2T range) to avoid distortion and additional losses. For
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convenience, we will assume that our ferromagnetic material is operated in the linear or
non-saturated part of the B-H characteristic.

Figure 2.3: Representative B versus H Characteristic for Ferromagnetic Material

Example 2.1: Given a ferromagnetic core similar to the one shown in Figure 2.2a with
dimensions mL 2.01  , mL 1.02  , md 02.0 , and mx 02.0 . The relative

permeability of the core material is 5000. The coil has 50 turns and carries a current of
1A. Determine the flux and flux density in the core material.

Solution. The reluctance is computed as follows

 
 

13

7
,

_
107.238

)02.002.0(/1045000

1.02.02 







 H

mmmH

mm

A

L

oironr

pathmean



The mmf is found from

   tAAturnsNImmf  50150

Magnetic’s Ohm’s Law then tells us that

Wb
H

tAmmf
 5.209

107.238

50
13












The flux density is then found by assuming uniform flux flow:
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 
T

mm

Wb

A
B 523.0

02.02.

5.209







2.2 Magnetic Circuit Analysis with an Air Gap

Consider next that we introduce an air gap into the magnetic circuit as shown in Figure
2.4. The analysis is not much different except that we must now account for the fact that
the flux must traverse material that is not ferromagnetic and that does not have its high
relative permeability. Let’s assume that our principle flux path is through the
ferromagnetic core and air gap (this ignores leakage flux paths, but we will assume that
these reluctance paths are much larger, approaching open circuits). We can apply
Ampere’s Law,

NILHLHLH gapgapironironpathpaths path 

Substituting the permeability relationships,

NIL
B

L
B

gap

o

gap

iron

oironr

iron 
 ,

where we have used the fact that the air gap has a relative permeability of one. Next,
relating flux ( ) to flux density (B),

NIL
A

L
A

gap

gapo

gap

iron

ironoironr

iron 








,

noting that the flux going into the air gap must be the flux coming back out (by our
assumed path) and assuming that the cross-sectional area in the two media are the same
(the flux does not bow out when crossing the air gap)

Figure 2.4: Magnetic Circuit with an Air Gap
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A

L
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o
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
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





















 ,

or by replacing the terms in parentheses by equivalent reluctances, we get

  NIgapiron  

This equation shows us that we could have viewed this magnetic system as simply an
mmf source driving flux through two series reluctances as shown in Figure 2.5. An
electric machine is designed so that the reluctance of the air gap is much larger that the
reluctance of the iron, so that most of the “source” mmf will drop across the air gap.

gap

o

gap L

ANINI 
 




If you think about it (which I encourage), since BA , the above relationship tells us

that

gap

o

L

NI

A
B




If we know that we want this value between 1 and 2T, suddenly we have some guidance
in how to design our machine; however, at this point, we have three parameters that we
can control (turns N, current I, and air gap gapL ). It does at least start to point us to the

fact that the dimensions of the machine and the material that it is constructed from are
purposefully selected. OK, now what? We can place a ferromagnetic structure into our
air gap, but how do we get it to move? Well, we must introduce a few more new
concepts!

Figure 2.5: Circuit Equivalent for the Magnetic System with an Air Gap
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Example 2.2: Suppose that the ferromagnetic core in the previous example has a 0.5cm
air gap cut into it. Determine the reluctance of the air gap and the new number of turns
that will ensure that we can achieve 1.25T in the gap with 10A of current.

Soultion. The air-gap reluctance is found via

 
16

7
1095.9

)02.002.0(/104

005.0 





 H

mmmH

m

A

L

o

gap

gap


Note, this value is nearly 42 times larger than the reluctance of the iron (which we will
assume has not changed much by shortening the mean path by 0.5cm). Thus, the purpose
of the iron is to channel the flux to the air gap so that most of the mmf is dropped here.
To achieve the desired air-gap flux density, we consider

  
m

mHAN

L

NI

A

mmf

TB
gap

ogap

005.0

/10410
25.1

7







The solution gives

turnsturnsN 4983.497 

Clearly, to create the larger value of flux (and flux density) flowing through a much
larger reluctance path, we need to substantially increase our mmf source. In this case, we
achieve this by both increasing the current and the turns (in each case, by a factor of 10).

Example 2.3: Consider the axial view (straight on) of a rotating machine presented in
Figure 2.6a. Let’s assume that the diameter of the rotor is 5cm, the axial length of the
rotor is 10cm, and that the air gaps are 1mm. Further, we will assume that the
permeability of the stator, rotor and pole iron is infinite so the detailed reluctance path of
Figure 2.6b reduces to that of Figure 2.6c. Consider that we wrap a winding about the
stator poles and choose to impress 0.5A in that winding (composed of copper wire with a

resistivity of m 810724.1 and a cross-sectional area of 26102047.0 m , an area
representative of AWG #24 wire).

a. How many turns must we wrap to achieve an air-gap flux density of 1T
b. Approximate the losses in this coil.

Solution. a. We attack this problem with the magnetic equivalent circuit shown in Figure
2.6c where



10

gap

gapo
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L
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2
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 




We can then calculate the B-field in the air gap as

gap

o

gap

gap

gap
L

NI

A
B

2




Solving for the turns gives

  
   turns

mHA

mT

I

LB
N

o

gapgap
3183

/1045.0

002.012
7







This is a lot of turns! How can we modify the design to require fewer turns?

b. To get the winding losses, we need to figure out how much conductor we need to
create the 3183 turns (no half turns allowed!). Consider the distance around one pole:
across the front part of the pole is approximately one rotor diameter or 5cm; the axial
distance (into the sheet) is 10cm. Thus, the length of one turn is

mmmmmLturn 3.01.005.01.005.0 

The total length of wire is then the number of turns times the length/turn or

  mturnmturnsNLL turnwire 9.954/3.03183 

To find the resistance of the wire, we apply our resistance formula

  











42.80
10823.0

9.95410724.1
26

8

m

mm

A

L
R

wire

wirewire
wire



Finally, to establish the losses in the coil we evaluate

  WARIP wire 1.2042.80)5.0( 22 

And we would require a voltage of    VAIRV wire 21.4042.805.0  to achieve the

required current. We start to see a bit of the iterative design process. If this power or
voltage is not acceptable, we could adjust the current and turns and repeat the process
until the voltage or power is what we desire. Sweet!

Now, to figure out how we can create forces and torques!
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Figure 2.6: (a) Axial View of Rotating Machine; (b) Magnetic Equivalent Circuit
Considering All Relevant Reluctance Paths; (c) Magnetic Equivalent Circuit Assuming

that the Reluctance of the Iron Paths is Zero


