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Objectives of Section 5

 Explain the purpose of a prime mover governor and the synchronous machine
exciter

 Calculate the real power, reactive power and phase current given the apparent
power and power factor of the load and the rated line voltage

 Describe the layout of a synchronous machine and explain the purpose of the slip
rings and brushes

 Describe what is meant by a balanced three-phase set
 Explain how a balanced 3-phase set of currents and a set of spatially-displaced

coils result in a rotating magnetic field
 Describe how a stator can be made to create more than 2 poles
 Relate the poles, speed, and frequency of a synchronous machine
 Describe the origin of each component of the per-phase equivalent circuit
 Explain why the power angle is the angle of the excitation voltage
 Use the per-phase equivalent circuit to solve steady-state problems where the

terminal voltage is fixed
 Understand the characteristics of the torque and power versus power angle curves
 Compute the per-phase circuit parameters given the open-circuit and short-circuit

tests data
 Describe the roles of the exciter machine, rectifier, phase-controlled rectifier, and

pilot exciter machine in a brushless excitation system
 Explain the differences in operating a synchronous machine as a generator or as a

motor
 Describe what operation an inverter performs
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5.0 AC SYNCHRONOUS MACHINES

Why do we study AC synchronous machines? The short answer is that 3-phase AC
generators are the workhorse of the power generation arena. Why? They are not as power
limited as DC generators and voltage-level shifting is less expensive using AC (via
transformers) rather than DC (power electronics). Thus terrestrially at your local power
generation plant or shipboard, you will find a synchronous machine. Well, to be accurate,
you will find not just a synchronous machine but a prime mover and some source of fuel
for the prime mover. A block diagram for the layout of a shipboard generation system is
shown in Figure 5.1. Let’s discuss the elements of this system before getting into the
details of the synchronous machine.

On a surface combatant such as the Arleigh Burke-class destroyer, the engine (prime
mover) that drives the synchronous generator is a gas turbine (Allison 501-34K). The gas
turbine converts the F76 fuel into mechanical power. A governor connected to the prime
mover regulates its speed and controls the amount of power transmitted to the generator.
The generator in turn converts the mechanical power to electrical power. The automatic
voltage regulator (AVR) and exciter connected to the synchronous machine adjust the
rotor field current to maintain the required terminal voltage. Cables, switchboards,
transformers, and circuit breakers then route the three-phase power to the many shipboard
loads. On other ships, the prime mover may be a diesel engine or a steam turbine or some
combination.

Figure 5.1: Notional Portion of a Shipboard Electric Power Generation System

To further motivate our investigation, let’s consider a shipboard application.

Example 5.1: Consider that we have a 3-phase, 1800rpm, 450V synchronous generator
rated to supply 3.75MVA to a ship distribution system requiring a 0.8 lagging power
factor. If this machine was operating at rated conditions, what would be the real and
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reactive power and the current being supplied? If the generator has an efficiency of 98%,
what load torque does the prime mover provide?

Solution. The real and apparent power are related to the power factor by

P

P

S

P
pf

3

3

So we can compute that    MWMVAP P 375.38.03  . This represents real work being

performed on the ship: illuminating corridors, heating staterooms, and turning motors that
spin pumps that pressurize the fire main. To get the reactive power, we use the power
triangle result that

2
3

2
33 PPP QPS 

And find MVARMWMVAQ P 25.2)3()75.3( 22
3  . In large measure, this quantifies

the magnetic field requirements of the many shipboard (induction) motors. The rated
voltage is always a line voltage, and the apparent power is related to the line voltage (this
is the voltage we can measure between any two cables in a 3-phase system) and line
current by

LLP IVS 33 

Thus we calculate the magnitude of the line current as
 

A
V

MVA
I L 4811

4503

75.3
 . In a

shipboard application, the generator will normally be operated below rated load to
provide margin for bringing on emergency equipment or equipment that may be shifted
between generators due to a casualty (90% is a useful ceiling value). The lagging power
factor will further tell us something about the angle between the a-phase voltage and
current

  asaspf IVpf
~~

cos 1  

We will defer that calculation until we derive our per-phase equivalent circuit and
understand the difference between phase and line quantities! What can we say about the
prime mover? Well, let’s first determine the mechanical power delivered by the prime
mover. We can calculate it by using the generator efficiency
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So that     MWMWPmech 061.398.0/3  . The prime mover torque can then be

calculated from
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5.1 Principle of Operation

A three-phase synchronous machine consists of an inner rotating cylinder called the rotor
and an outer stationary housing called the stator as shown in Figure 5.2. A shaft runs
through the rotor and it is balanced on bearings. The periphery of a three-phase stator is
normally slotted with the number of slots typically being an integer multiple of six. A
three-phase machine will require three identical coils, each with SN turns. These winding

are normally called the armature. The turns of one phase coil are distributed in multiple
stator slots with an example being shown in Figure 5.3. The angular distribution of the
turns is called the coil breadth. The angular distance between the sides of a given turn is
termed the coil pitch. The other two phase coils are positioned similarly about the stator

periphery, with the centers of those distributions spatially-displaced by 120 , respectively.
Instead of having to draw all of the slots and windings each time, we represent each
distributed coil by a concentrated coil located in the center of the distribution. This is
shown in Figure 5.4. Note, the circle with a dot denotes that current is referenced out of
the page while a circle with a cross indicates that current is referenced into the page.

Figure 5.2: Layout of Synchronous Machine
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The rotor of a synchronous machine contains a winding called the field winding (there
are other short-circuited windings on the rotor called damper windings that help with
dynamic stabilization; however, in the steady-state, these windings do not carry any
current and thus do not influence the steady-state model). For simplicity, we will consider
the case of a round rotor (uniform air gap about the machine). The rotor may be slotted
with the turns of the field winding distributed in those slots. The field winding will be
supplied DC current. You say, “Wait a second, the field winding is on the rotor, and the
rotor is spinning. How can we supply DC current to something that is moving?” The
simplest solution to this dilemma is slip rings and brushes as illustrated in Figure 5.5.
Note that the end connections of the field winding are tied to two copper rings mounted
on the rotor shaft. Stationary carbon brushes are then made to ride upon the rings. A
stationary DC source is then applied to the brushes allowing DC current to flow through
the field winding. Since the brushes are not commutating (short-circuiting or helping to
reverse the current) coils as in a DC machine, the wear and maintenance requirements are
not as intensive. Later, we will consider how power electronics allows us to accomplish
this feat without brushes.

Figure 5.3: Slotted Synchronous Machine Stator with Distributed A-Phase Winding
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Figure 5.4: Synchronous Machine Represented by Concentrated Stator Windings

Figure 5.5: Illustration of Slip Rings and Brushes for Supplying DC Current to a
Synchronous Machine Field Winding

OK, here is the big picture. The DC current flowing in the field winding will set up a
magnetic field on the rotor (think here North and South poles). The prime mover
(mechanical engine) will then spin the rotor at what we will soon refer to as synchronous
speed. The magnetic field sweeping past the stationary stator coils will induce voltages.
Since the phase coils are spatially displaced, the induced voltages will be time displaced

and will constitute a balanced set (same frequency, equal amplitude, and 120 displaced).
The six terminals of the stator are then connected in either wye or delta and the resulting
three wires are distributed to the system. Once stator currents are allowed to flow (if the
system is balanced then these currents will form a balanced set), we will find that these
currents will create a magnetic field on the stator that will synchronously chase the
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magnetic field on the rotor. The angle of separation between the two fields will relate to
the amount of electrical power being delivered (see Figure 5.6). The machine torque may
be thought of as the tendency for the North and South poles of the two rotating fields to
align. If the North of the rotor field is aligned with the South of the stator field, then there
would be no torque being produced. Once an angle of separation occurs, then we will
have a torque.

Well, it should sound reasonable that a DC current in the field winding will create a fixed
magnetic field that is then rotated by the prime mover. But what about the stator field
created by impressing a balanced-set of currents in a set of spatially distributed coils?
That one will take a bit more explanation. Let’s assume that our three phase coils carry a
balanced set of currents (recall, a balanced set requires that the currents have the same

amplitude and frequency, but are phase displaced by 120 , respectively).

 tII emas cos

 120cos
3

2
cos 








 tItII emembs 




 120cos
3

2
cos 








 tItII ememcs 




Here, the a, b, and c refer to the a, b, and c stator phases. The subscript m stands for
maximum value. The e is the radian frequency of the sinusoidal currents (thus in

radians/sec).

Figure 5.6: Synchronous Machine Torque Production Viewed as the Interaction Between
Rotating Rotor and Stator Magnetic Fields
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The phase angle of the currents technically should be in radians as shown first; however,
we generally visualize angles better in degrees so the latter representation is more
commonly used. This is termed an abc-sequence since the a-phase takes its peak first,
then the b-phase, and finally the c-phase, as shown in the following figure.

As we learned previously with our introduction to magnetism, each phase coil will create
a magneto-motive-force (mmf) given by

   tmmftININmmf epkemSasSas  coscos 

    120cos120cos  tmmftININmmf epkemSbsSbs 

    120cos120cos  tmmftININmmf epkemScsScs 

This is somewhat of an over-simplification in that we should look at the mmf distribution
and consider the fundamental of that distribution, but this captures the idea adequately (or
alternatively, we can think of SN as the number of turns of an equivalent winding that is

sinusoidally distributed). The question arises though as to how we combine these fields
since the windings are spatially displaced and the mmf’s are varying with time. We need
an accounting system to help us out. Let’s define a magnetic axis for each phase winding.
We will define the positive magnetic axis as being in the direction that positive flux will
flow when positive current flows in the winding. How do we interpret that? Well we
have assigned reference directions for the three-phase coil currents (these are the dots and
the crosses in the figure). Now, use the right-hand rule: put your thumb in the direction of
the current, then your fingers will wrap in the direction of the flux. This enables us to

define the three axes shown in Figure 5.7 (Note, these axes MUST be 120 displaced).
To keep the picture tidy, we only draw the positive axis, recognizing that negative current
will push flux in the opposite direction.
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Figure 5.7: Magnetic Axes Assigned for the three Stator Phases

Now we have a coordinate system that will allow us to plot out asmmf , bsmmf , and

csmmf at various points in time. We can then consider them as vector quantities and

perform the vector addition to determine the resultant stator mmf or

csbsass fmmfmmfmmfmm




All right, let’s consider doing this vector addition at some specific time instants. Let’s
start at t = 0, so

  pkepkas mmfmmfmmf  0cos 

  pkepkbs mmfmmfmmf
2

1
1200cos  

  pkepkcs mmfmmfmmf
2

1
1200cos  

To make these vectors so we can consider adding them, we place them on the magnetic
axes as shown in Figure 5.8. Decomposing the vectors into x- and y-coordinates yields
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Figure 5.8: MMF Contributions of the Three Stator Phases at t = 0

    pkpkpkpkxs mmfmmfmmfmmfmmf
2

3
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1
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1
,  

    060sin
2

1
60sin

2

1
0,  

pkpkys mmfmmfmmf

Where the c-phase gives the positive y-contribution and the b-phase gives the negative y-
contribution. Thus, the resultant vector at t = 0 is directed along the as-axis (x-direction)

and has a length of pkmmf
2

3 .

Let’s consider the resultant stator mmf 120 later in time, or at
e

t


120
 (again, where

we are indelicately mixing units).
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As before, we place these values onto the magnetic axes to make them vectors (Figure
5.9) and then add them. What we notice is that once again two vectors are displaced from
the one by sixty degrees and are half as long. As a consequence of the symmetry, the

resulting vector has a length of pkmmf
2

3 and is directed along the bs-axis.

Figure 5.9: : MMF Contributions of the Three Stator Phases at
e

t


120


Finally if we consider a time instant another 120 later, we find
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After placing these values on their respective axis (Figure 5.10), we can perform the

vector addition and what we find is that the resultant has a length of pkmmf
2

3 and it is

directed along the cs-axis. So, we notice that the resultant stator mmf vector has a
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constant length of pkmmf
2

3 and it has rotated from the as-axis to the bs-axis to the cs-

axis (see Figure 5.11).

Figure 5.10: MMF Contributions of the Three Stator Phases at
e

t


240


We can consider additional points in between and convince ourselves that the length is

always pkmmf
2

3 and that it is rotating counter-clockwise. Further, the resultant vector

will make one revolution in the time corresponding to 360 electrical degrees (shown in
Figure 5.11). Stated otherwise, one electrical cycle corresponds to one mechanical
revolution of the field. Thus the angular speed of the field must be equal to the angular
frequency of the stator currents or

emf  
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(a)

(b)

Figure 5.11: Rotating Resultant Stator Magnetic Field

Where the subscript ‘mf’ stands for magnetic field. That seems like an important result
(and it is); however, we normally like to think about frequency in Hz ( ef ) and rotational

speed in rpm ( mfN ) where





2
e

ef 

mfmfN 


30


Substituting yields
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emf fN 


2
30



Or simply

emf fN 60

Therefore, if 60Hz currents are flowing in the stator phases, the stator field will rotate at
(60)(60) = 3600rpm. Note, the unit conversion (Hz to rpm) is nestled inside the constant
60 out front. Now in the case considered previously, the magnetic field was traveling
counter-clockwise. How do you suppose that we could change the direction to clockwise?
Well, the easiest way to do this would be to switch the sequence on the currents from abc
to acb. Essentially this sequence tells us how we hop from magnetic axis to magnetic
axis. Thus if our current sequence is acb, we proceed from the as-magnetic-axis to the cs-
axis to the bs-axis (see Figure 5.7), which yields clockwise rotation. Sweet!

We can also wind our synchronous machine to produce an integer multiple of two poles

(therefore, 4, 6, 8, etc.). We do this by subdividing our phase coils into
2

P
separate coils.

These coils will have a pitch of
P

360
and are connected in series. For the a-phase of a 4-

pole machine, this will appear as follows.

Figure 5.12: The a-Phase Coil for a 4-Pole Machine

Now each phase will have two magnetic axes implying that each phase will produce 4
magnetic poles (see Figure 5.13). Do not be tempted into thinking that this is then a 12-
pole machine, as we must perform the vector addition of the three sets to create a
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resultant set of only four poles! A complete 4-pole stator with positive and negative
magnetic axes is pictured in Figure 5.14. This is messy but it facilitates the following
point. As before when the a-phase current achieved its maximum, the resultant field was
directed along the as-axis, the same follows here (see the a+ axes). When the b-phase
current then achieves its maximum, the poles shift to where the b-axis is (see the b+
axes).

Figure 5.13: The Four Magnetic Poles Produced by the a-Phase ( 0asi  )

What we observe in Figure 5.14 is that the poles must shift 60 . Next, when the c-phase
current takes its peak, the resultant field will align along its magnetic axis which is

situated 60 further (see the c+ axes). Finally, when the a-phase current once again takes
its peak, the field will have made half a rotation.
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Figure 5.14: Four Pole Stator with Magnetic Axes Indicated

So now one electrical cycle corresponds to half a mechanical revolution, so the speed of
the magnetic field is half that of the angular velocity of the stator currents. From this we
can deduce the following relationship for an arbitrary number of even poles P that

emf
P


2


Or in terms of rpm and Hz

P

f
N e

mf

120


This tells us is that if we want to create a slower rotating magnetic field, then we either
need to operate at a lower frequency or add more poles to the machine. Adding poles to
the stator means subdividing the phase coils into multiple coils and distributing them with
a different coil pitch. Plugging in the first few values of permissible P and assuming an
electrical frequency of 60Hz enables us to create the following useful chart.
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Table 5.1 Synchronous Speed versus Poles for a 60Hz Machine

P 2 4 6 8 10

mfN (rpm) 3600 1800 1200 900 720

What we will find is that the rotor mechanical speed must be synchronized to the speed of
the stator magnetic field. This means that the prime mover speed and the number of
poles will dictate the frequency of the machine. Alternatively, we can view this chart
from the perspective of the prime mover. If we have a gas turbine that is designed to
operate at 1800rpm, then to produce 60Hz we must have a 4-pole generator.

5.2 Per-Phase Equivalent Circuit

We would next like to derive a per-phase equivalent circuit representation of the three-
phase synchronous machine. What is a per-phase circuit? Well, for three-phase systems
that are balanced, we will find that like voltage and current phase quantities will only

differ by an appropriate 120 shift. Therefore, not much additional information is
captured by carrying along the two additional phases. Thus, a per-phase representation
converts a three-phase circuit problem into a single-phase circuit problem. There are still
some line and phase conversions that we would need to worry about, and there is some
accounting to be done with relation to three-phase power, but per-phase analysis is a very
convenient tool.

Let’s first review phase and line quantities. Consider the three-phase machine shown in
Figure 5.14B, connected in wye (a) or in delta (b). Note that phase quantities are
associated with the actual coil. Thus the voltage directly across or the current directly
through the turns of the coil are the phase quantities. In the case of the Y-connection, the
phase voltage is a line-to-neutral voltage (The neutral being the common connection
point for the three phases). The line voltage is the voltage between any two of the three
lines that are distributed to the three-phase system. For a balanced system, the line

voltage is 3 times larger than the line-to-neutral (and phase) voltage. In the case of the
delta-connection, the phase voltage is the line voltage. We refer mainly to the line voltage
because it is a quantity that we can always go into a system and measure (the neutral for
some systems is not available and so the line-to-neutral voltage is not as reliably
accessible).

In considering a per-phase model of the three-phase synchronous machine, we will focus
arbitrarily on the a-phase stator coil. Further, we will perform our derivation for a 2-pole
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machine and extrapolate our results to an arbitrary P-pole machine. Since we will be
considering quantities that will be varying with mechanical position as well as time, we
need to assign rotor position. We do this by defining two axes assigned to the rotor. The
first is the direct axis (d-axis): it is assigned using the right-hand rule with the field
winding. Place your thumb in the direction of the assumed field current, your fingers then
wrap in the direction of the flux and the d-axis. The quadrature axis (q-axis) is then

assigned 90 counter-clockwise from the d-axis by convention. Now the q- and d-axes
will rotate with the rotor so we assign the rotor position angle m to be the angle between

the stationary as-axis and the rotating q-axis.

Figure 5.14B: Three-Phase Synchronous Machine Stator connected in (a) Wye and (b)
Delta
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Figure 5.15: Rotor Axes and Mechanical Position Assignment

To derive the per-phase equivalent circuit (for the a-phase stator coil), we need to take
into account the effects on the stator coil from both the rotating stator field (created by
currents flowing in the three stator phases) and the rotating rotor field (created by DC
current in the field winding and the motion provided by the prime mover). We will do
this by keeping track of the flux linking the as-phase coil due to each source.
Mathematically, we will write this as

sasfasas ,,  

where fas , is the flux due to the rotor field and sas , is the flux due to the stator field.

What is meant by flux linking the as-coil? Well, let’s consider the first component. The
as-axis gives us a bit of a hint about the flux linking. If the flux is pushed along the as-
axis, it is positive linking; if it is pushed in the opposite direction, it is negative linking. If
the flux is orthogonal to the axis, then the flux linkage would be zero. The flux linking
the coil is the flux piercing through the center of the coil, between each turn. OK, so let’s
consider the flux linking the as-coil due to the rotor field. To do this let’s picture the rotor
position at four different locations (Figure 5.16). Next, we sketch the flux linking the as-

coil as a function of the rotor position. At 0m , the flux from the rotor is orthogonal

to the as-axis, so there is no flux coupling. At 90m , the rotor flux is directed along

the as-axis, so the flux coupling is a positive maximum. At 180m , the rotor flux is
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orthogonal to the as-axis and the coupling is zero. At 270m , the rotor flux is directed

along the negative as-axis, so the coupling is negative. The resultant waveform is
sketched in Figure 5.17. The stator and rotor winding distributions and the shaping of the
rotor poles is such that the flux coupling is as sinusoidal as possible such that

 mfpkfas  sin,, 

Figure 5.16: Flux Linking Stator a-Phase Coil Due to the Rotor Field

Figure 5.17: Variation of Flux Linking a-Phase versus Rotor Position
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To express the peak value of this expression, recall magnetic’s Ohm’s Law. First note
that the rotor mmf can be expressed as

fff INmmf 

Where fN is the turns of the field winding and fI is the field winding current. Then if

we consider the reluctance path at 90m , we see that the flux traverses two air gaps,

the rotor steel, and the stator steel. If the permeability of the steel is large, then the air-
raps will dominate this path (by design). This path is termed the magnetizing path and
we will designate it by m so that

m

ff

m

f

fpk

INmmf





,

Next, let’s determine the flux cutting through the as-coil due to the stator field. Given the
balanced set of currents

 tII emas cos

 120cos  tII embs 

 120cos  tII emcs 

We’ve shown previously that the stator rotating magnetic field results in lines of flux
shown in Figure 5.18 below and so we can sketch the flux linking the as-coil (Figure
5.19).

Figure 5.18: Flux Linking a-Phase Coil Due to Rotating Stator Magnetic Field
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Figure 5.19: Variation in Stator a-Phase Flux Due to Stator Rotating Magnetic Field

Thus,

 tespksas  cos,, 

where

m

mS

m

pk

m

pks

spk

INmmfmmf








 2

3

2

3

,

,

The
2

3
factor was derived earlier when we performed the vector addition of the three

phase contributions. But look you, sas , is in phase with asI (it has the same phase angle,
0 ), so we can rewrite our expression as

as

m

S

sas I
N


 2

3

,

OK, provided our machine is not magnetically saturated (which we tacitly assume when
we employ reluctances in our analysis), we can sum up the flux contributions due to the
field and stator and write
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We are fast approaching the application of Faraday’s Law. Here it is now!

dt

d
NE as

sinda


,

This is saying that the induced voltage in the a-phase stator coil is equal to the product of
the turns of that coil and the time rate-of-change of the flux linking that coil. But the first
term in as varies with position, so we must apply the chain rule with it. Thus the induced

voltage becomes

dt

dI
N

dt

dIN

d

d
NE as

m

S
m

m

m

ff

m

Sinda














2

,
2

3

sin





which finally yields

dt

dI
NINN

E as

m

S

m

m

mffS

inda














2

,
2

3

cos


where m
m

dt

d



 is the angular mechanical rotor speed. If we introduce the constants

m

fS

sf

NN
L


 and

m

S

S

N
L




2

2

3

then the induced voltage equation becomes
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dt

dI
LILE as

Smmfsfinda   cos,

Sweet! We are just about there. Looking into the terminals of the a-phase coil, we see this
induced voltage due to the two rotating fields and we see the resistance of the coil, sr , so

indaassas EIrV ,

or

mmfsf
as

Sassas IL
dt

dI
LIrV  cos (2-pole machine)

Since for a 2-pole machine m e  , we can rewrite the expression as

cosas
as s as S sf f e m

dI
V r I L L I

dt
    (2-pole machine)

Going to the frequency domain (phasor domain), we replace currents and voltages by
phasor quantities and the derivative operator introduces a ej where e is the electrical

frequency of the steady-state variables, so

aasSeassas EILjIrV
~~~~

 

If we finally assign the synchronous reactance SeS LX  , we have our final steady-

state synchronous machine representation.

aasSassas EIjXIrV
~~~~



Wait a second we’ve introduced something new in there as well! This new creature aE
~

is termed the excitation voltage and it derived from the term

cosa sf f e mE L I   (2-pole machine)
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The issue that we have is that even though our originating term (on the right) is a co-
sinusoid, it varies with rotor position and so its angle is not necessarily zero degrees. If

we choose the a-phase terminal voltage asV
~

as being our reference phasor (zero degrees),

then by definition, the angle of aE
~

will be  . This angle is known as the power angle

(not to be confused with the power factor angle pf ). The rms value of the sinusoidal

expression above is
2

sf f eL I 
and so we define

2

sf f e

a

L I
E


 

To extend this development to an arbitrary number of poles, let’s go through the
development for a 4-pole machine. The flux cutting through the a-phase coil due to the
filed winding flux is shown in the next figure.

The field winding is now sectioned into two coils to produce the four poles so that

,
2

f f

pk f

m

N I
 



The induced voltage in each of the coils associated with the a-phase phase is then given
by
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 ,

1, 2, , ,sin 2 cos 2
2 2

as fS S
as f as f pk f m S pk f m m

dN N d
E E t N t

dt dt


         

Since the a-phase coils are in series, the total induced voltage will then be

, , 2 cos(2 )as f S pk f m mE N t  

For a 4-pole machine 2e m  , thus the induced voltage becomes

, , cos(2 )as f S pk f e mE N t  

In general, for a machine with P poles, the induced voltage is given by

, , cos
2

as f S pk f e m

P
E N t  

 
  

 

Upon substituting for ,

2

f f

pk f

m

N I

P
 



, we arrive at

, cos
2

as f SF F e m

P
E L I t 

 
  

 

This can be once again be modeled in the frequency domain by

2

sf f e

a

L I
E


 

as it was in the 2-pole case!

Our per-phase equivalent circuit becomes that shown in Figure 5.20, where asV
~

and asI
~

are the terminal a-phase voltage and current, respectively
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Figure 5.20: Per-Phase Equivalent Circuit for Motor Operation

Since we are primarily interested in generator operation, we prefer to reference the
current leaving the machine so that (Figure 5.21)

asasSassa VIjXIrE
~~~~



Where aE
~

is still defined as we did above. Note you, this excitation voltage is an AC

voltage that we are representing as a phasor. The amplitude of this AC voltage depends
on fI which is the DC current flowing in the field winding. This is OK, because the DC

Figure 5.21: Per-Phase Equivalent Circuit for Generator Operation
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current is what produces the rotor magnetic field which is then rotated by the prime
mover.

Example 5.2: An Arleigh-Burke Class destroyer has a 3-phase, Y-connected, 4-pole,
60Hz synchronous generator rated to deliver 3.75MVA at a 0.8pf lagging with a line
voltage of 450V. The machine stator resistance is negligible and the synchronous
reactance is equal to 04.0 . The constant HLsf 06.0 . The actual system load on the

machine draws 2MW at a 0.8pf lagging, answer the following. Assume that the voltage
regulator has automatically adjusted the field current so that the terminal voltage is its
rated value.

a. What is the rated speed?

b. Determine the reactive and apparent power delivered by the machine.

c. Find the current drawn from the machine using the terminal voltage as the
reference phasor.

d. Determine the excitation voltage and identify the power angle.

e. Find the field current

Solution. a. The speed of the machine in rpm is found once we know the number of poles
and the system frequency

 
rpm

P

f
N e

m 1800
4

60120120


b. The apparent power is found from our power factor relationship. Here we must use the
actual power being delivered, not the rated values!

MVA
MW

pf

P
S P

P 5.2
8.0

23
3 

Next, the reactive power is found via the power triangle

MVARMWMVAPSQ PPP 5.1)2()5.2( 222
3

2
33 
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c. We can find the line current of the machine a couple of different ways. Let’s consider
each. First, we can use the apparent power expression to get the magnitude

LLP IVS 33 

The rated voltage is always the line voltage, so substituting gives

 
A

V

MVA

V

S
I

L

P
L 3208

4503

5.2

3

3 

To make this the phase current asI
~

, we need to then calculate its phase angle as dictated

by the load power factor and the fact that asV
~

is our reference phasor

  asaspf IVpf
~~

cos 1  

Substituting and solving for the angle of the current gives

     87.368.0cos0cos
~~ 11   pfVI asas

Therefore the phase current is 87.363208
~

 AI as . Alternatively, we could have

found the current using our three-phase complex power expression.

*
333

~~
3ˆ

asasPPP IVjQPS 

To use this expression, we need to correctly establish the phase voltage asV
~

. Since our

machine is Y-connected, the phase voltage is a line-to-neutral voltage and so we must
convert the rated line voltage to its line-to-neutral value. We do this via

V
VV

V L
LN 8.259

3

450

3

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Then since the phase voltage is selected as the reference phasor, we have
08.259

~
 VVas . Substituting into the complex power expression yields the conjugate of

the phase current

 



87.363208

08.2593

5.12
~

3

~ 33* 






 A

V

MVARjMW

V

jQP
I

as

PP
as

To retrieve the current, we need to simply flip the sign on the angle so that

87.363208
~

 AI as

As we found previously!

d. To determine the excitation voltage and power angle, we need to apply the KVL
equation for our equivalent circuit (with the current referenced leaving the machine into
the load).

asasSassa VIjXIrE
~~~~



Substituting, recognizing that the stator resistance was considered negligible, gives

    94.161.35208.25987.36320804.0
~

 VVAjEa

Therefore the power angle 94.16 .
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e. The field current is found from the magnitude of the excitation voltage

2

sf f e

a a

L I
E E


 

To use this expression, we first evaluate 2 2 60 377 /e ef rad s     and then

substitute

 
 

2 352.12
22.015

0.06 377 /
a

f

sf e

VE
I A

L H rad s
  

Recall, fI is a DC current that is flowing in the field winding! Clearly, we can retrace

our steps and determine the operating conditions for different load settings. What we
would find is that for a lagging power factor, the field current will need to be increased
for increasing load in order to maintain the terminal voltage at its rated value. Convince
your self of this by repeating the problem for rated conditions.

5.3 Torque/Power versus Angle Characteristics

Well, the only item that we do not have a warm fuzzy about is the power angle  . We

sort of shoved it into aE
~

because we knew this phasor had some angle but we didn’t

know a priori what that angle would be. Here’s where we start coming full circle. We
initially described the operation of the synchronous machine by explaining torque
production as the interaction of the two rotating fields (Figure 5.6). We will find that the
power angle relates to the angle of separation between these two fields. To decipher how
this works, let’s assume that the stator resistance sr is negligible so that our equivalent

circuit is as follows.
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Figure 5.22: Approximate Synchronous Generator Per-Phase Equivalent Circuit (Stator
Resistance Neglected)

Now the circuit contains no loss mechanism. Is this reasonable? Yes, for large machines
where the efficiency is typically greater than 98%. So we are saying that Pmech PP 3 ,

where PP3 is the three-phase power at the terminals of the machine (real power in is

equal to the real power out of the machine). Next we want to derive an expression for the
terminal power out of the machine. We can write an expression for the a-phase current as

S

sa
as

jX

VE
I

0~ 




Here sV and aE are the rms values of the respective quantities. Simplifying, we get

  






9090

90

0

90

~












S

s

S

a

S

s

S

a
as

X

V

X

E

X

V

X

E
I 



To establish the complex power, we will need to evaluate the conjugate of the current so

   9090
~* 

S

s

S

a
as

X

V

X

E
I 

To evaluate the per-phase complex power, we then evaluate
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   9090
~

0
~~ˆ

2
**

1 
S

s

S

as
assasasP

X

V

X

EV
IVIVS 

Expanding this into rectangular form using Euler’s Identity:  sincos jAAA 

gives

       90sin90cos90sin90cosˆ
2

1 j
X

V
j

X

EV
S

S

s

S

as
P  

Since  sin)90cos(  ,  cos)90sin(  , 090cos  , and 190sin  , the per-

phase complex power becomes (upon regrouping real and imaginary parts)









  cossinˆ

2

1

S

as

S

s

S

as
P

X

EV

X

V
j

X

EV
S

Since the three-phase complex power is simply

PPPP jQPSS 3313
ˆ3ˆ 

We find by comparison that

sin
3

3

S

as
P

X

EV
P 









 cos

33 2

3

S

as

S

s
P

X

EV

X

V
Q

We can sketch the real power characteristic versus  as shown in Figure 5.23. Since this
is the real power delivered to the load, positive PP3 corresponds to generator operation

and thus negative PP3 corresponds to motor operation. Therefore,  is positive for

generator operation and negative for motor operation. Zero power being transmitted
would correspond to an angle of zero degrees; maximum power transmitted corresponds
to an angle of ninety degrees.
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Figure 5.23: Real Power versus Power Angle Characteristic (  0sr )

Operation between  9090   is statically stable. Operating points at other values
of power angle are statically unstable, meaning that any small perturbation pushes
operation over to the statically stable region (think here of a car delicately perched on the
top of a very steep hill, the statically stable points are in the valley down below).

Since we have assumed a lossless machine, the mechanical power supplied to the
generator must equal the three-phase terminal power, so we can then calculate the
mechanical torque applied by the prime mover as




sin
33

Sm

as

m

P

m

mech
PM

X

EVPP
T 

The torque then also obeys a sinusoidal variation with the power angle (Figure 5.24).
One key point with regards to the real power and torque expressions is that we do not

operate the machine at 90 , despite this being the point of maximum power or
torque. The reason is that the machine is on the verge of static instability. Any further
increases, perhaps very, very small, will result in the stator and rotor fields losing
synchronism and the rotor coasting to stall (or possibly pole slippage where the rotor will
continue to be nudged along but will not be able to synchronize up). Either way, bad.

Thus the machine is generally designed so that 60 to ensure static stability. Further,
this range of power angles will correspond to stator current levels that will not burn out
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the machine. Short transitions to larger values of  are allowed, say during transient
conditions where load is being added or subtracted from the machine.

Figure 5.24: Torque versus Power Angle Characteristic (  0sr )

Example 5.3: Consider the synchronous machine from our previous example where
 0sr ,  04.0SX , HLsf 06.0 , and the machine is operated in a system where the

rated line voltage is 450V and the frequency of the system is 60Hz. Suppose we are given
that the prime mover supplies 14kN-m of torque to the rotor shaft and the exciter is
delivering 25A DC to the field winding. From the previous problem, we determined that

the phase voltage amplitude was V
V

8.259
3

450
 and the rated speed was 188.5rad/s.

a. Determine the excitation voltage

b. Find the current asI
~

c. Compute how much real and reactive power the machine is delivering to the
system

Solution. a. Since we are given the field current, we can immediately determine the
magnitude of the excitation voltage.

   0.06 25 377 /
399.9

2 2

sf f e

a

L I H A rad s
E V


  

To determine the power angle, we need to use our torque expression
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   
 

 
3 259.8 399.93

sin sin 41.33 sin
188.5 / 0.04

s a
PM

m S

V VV E
T kNm

X rad s
  


  



To determine the power angle  , we set this expression equal to the applied torque so

1 14
sin 19.8

41.33

kNm

kNm
   
  

 



Therefore we then know that 8.199.399
~

 VEE aa  .

b. To get the a-phase current, we consider the per-phase equivalent circuit and the
governing KVL expression

asasSassa VIjXIrE
~~~~



And solve for the current (noting that the stator resistance is zero)

    


404466
04.0

08.2598.199.399
~~

~








 A

j

VV

jX

VE
I

S

asa
as

c. To solve for the power delivered to the load, we can use our complex power expression

    40481.340446608.2593
~~

3ˆ *
3  MVAAVIVS asasP
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Which we can then break into rectangular form to find that MWP P 66.23  and

MVARQ P 38.23  . The power factor is found from 764.0
481.3

66.2

3

3 
MVA

MW

S

P
pf

P

P . With

no losses in the machine, the real power could have also been determined from the torque
and speed of the machine

  314 (188.5 / ) 2.64mech PM m PP T kNm rad s MW P   

The slight difference in the values being from round-off in the intermediate calculations
above.

Let’s quickly review our steady-state per-phase model of the synchronous machine. The

excitation voltage aE
~

arises from the rotor field sweeping past the a-phase coil and

inducing a voltage. The synchronous reactance SX models the voltage drop in the a-

phase coil due to the rotating stator field created by the balanced set of stator currents.
The resistance sr represents the resistance of the a-phase coil and we argued that it could

be viewed as negligible for high-power machines. The voltage asV
~

is the voltage across

the a-phase coil. We choose to make it the reference phasor so it always has a phase angle

of zero degrees. The current asI
~

is the a-phase coil current and we typically reference it

leaving the machine for generator operation and it will have a phase angle dependent on

the power factor of the load. The phase angle of aE
~

is by definition the power angle 

and it will vary with the amount of real power that the machine is converting.

How does this circuit help us explain the operation of this synchronous machine? Well,
we typically want the amplitude of the terminal voltage of our synchronous machine to
fall in some narrow range. Why: Because the rest of our system is set up based on this.
That is, all of our loads are rated to operate at a given voltage and bad things can happen
if this equipment “sees” too much voltage or too little voltage. OK, so we want the

magnitude of asV
~

regulated for all different loading conditions on the machine. How do

we do that? Well, think about this: if the voltage is constant, then different amounts of
power being delivered implies different amounts of current flowing from your machine
(magnitude and angle). Thus in our equivalent circuit, this implies a varying voltage drop
across the synchronous reactance SX and the stator resistance sr . Therefore to maintain

the terminal voltage constant while this drop is varying, we will find that we will need to

vary the magnitude of the excitation voltage aE
~

. Since this magnitude is dictated by

2

sf f eL I 
, we will adjust it by adjusting the field current fI . How about adjusting the
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excitation voltage magnitude by adjusting the rotor speed m ? Well no, because we

remember that the generator output frequency ef is dictated by
P

f
N e

m

120
 , so if we

change the speed, we change the frequency of our system.

An automatic voltage regulator (AVR) then is used in conjunction with the excitation
system that will automatically adjust the DC field current of the generator. This
discussion is most appropriate for shipboard generators where the generator capacity is
comparable to the attached load. In a terrestrial power grid, at the power plant there is an
incredible capacity and the resultant terminal voltage is naturally fixed (called an infinite
bus). Here the field current is used to control the amount of reactive power contributed by
a given generator. We will defer this discussion.

5.4 Parameter Determination

Our model of the synchronous machine requires the following machine parameters: the
stator resistance sr , the synchronous reactance SX , the inductance parameter sfL that

shows up in the magnitude of the excitation voltage, and the number of poles. The
number of poles is typically determined from the nameplate information: rated speed and
frequency of the machine. The remaining three parameters can be established through
tests in the laboratory. Let’s consider this further. We are tempted to assume that we can
simply measure the stator resistance with an ohmmeter. This approach has accuracy
concerns especially if this resistance is very small. Further, when the machine normally
operates, it will be carrying substantial current. Thus the ohmmeter approach will not

include the temperature effects due to the RI 2 heating (which can change the value of
the resistance). There is another secondary issue called “skin effect” that will also
introduce a small error when using DC versus AC to determine the resistance. OK, we
now know what NOT to do, so the question is what SHOULD we do? Consider the per-
phase equivalent circuit and further consider that we leave it unloaded, meaning the
terminal is open circuited and no current can flow (recall, each phase will have a similar

equivalent circuit, except that the voltage and current phasors will be shifted by 120 ,
respectively).
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Figure 5.25: Open-Circuit Test

Then there is no voltage drop across the stator resistance or the synchronous reactance:
the terminal voltage must equal the excitation voltage. OK, so here’s the experiment: we
spin the rotor at rated speed and measure the terminal voltage at various values of field
current. If the machine is Y-connected and the neutral is not available, we would

probably be measuring a line voltage then dividing it by 3 to get the appropriate phase
quantity. An example of this open-circuit characteristic is shown below. Note that the
characteristic is linear up to a certain field current at which point we start to observe
magnetic saturation. This is a limitation imposed by the machine iron. If we simply
consider the linear portion of the characteristic and we know that

2

sf f e

a a

L I
E E


 
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Figure 5.26: Open-Circuit Characteristic

What we observe is that this expression has a slope of
2

sf eL 
. Therefore, since we know

the angular frequency, we should be able to calculate the parameter sfL .

OK, next we can consider running what is termed a short-circuit test. Now, we essentially
apply a three-phase short circuit across the terminals of the three-phase machine and
measure the phase current that flows. For our per-phase circuit, this is equivalent to

shorting its terminals or setting 0
~

asV (Figure 5.27).

Figure 5.27: Short-Circuit Test
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Next, we spin the machine at rated speed and measure the terminal current as we vary the
field current. An example of a short-circuit characteristic is shown below (Figure 5.28).
Here, because of how the rotor and stator fields oppose each other, this characteristic
does not exhibit the magnetic saturation, so it is linear. The per-phase equivalent circuit
will tells us that

Ss

a
scas

jXr

E
I




~
~

,

or in terms of magnitudes

22
,

~
~

Ss

a

scas

Xr

E
I




But you say, we don’t know the magnitude of the excitation voltage. Except we do via
the open-circuit characteristic. Thus for the same values of field current, we can pull off

Figure 5.28: Short-Circuit Characteristic

the appropriate magnitude of the excitation voltage and use it together with the measured
short-circuit current to evaluate the magnitude of the stator impedance, so
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fsameI
scas

ocas

Ss
I

V
Xr

,

,22

~

~



Alternatively, we can consider the ratio of the slopes of the two characteristics ( ocK and

scK , respectively) to get the magnitude of the impedance

sc

oc

f

scas

f

ocas

Ss
K

K

I

I

I

V

Xr 
,

,

22

~

~

For a large machine, the stator resistance is very small and the synchronous reactance
dominates the impedance magnitude calculation so that

sc

oc

f

scas

f

ocas

S
K

K

I

I

I

V

X 
,

,

~

~

Technically since we are only using the linear portion of the open-circuit characteristic,
this value would be termed the unsaturated value of the synchronous reactance. If we
wished to find the stator resistance, we could set up the following test. With the machine
Y-connected, a DC voltage source is connected between two of the lines.
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Figure 5.29: DC Test to Establish Stator Resistance

We would slowly increase the DC voltage until rated current flows (here we are using the
fact that the rms value of the rated current and this DC value will have the same heating
effect). Since the current path will traverse two phases and the synchronous reactance is
zero at DC and the excitation voltage is zero since the rotor will not be spinning, we can
then calculate
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2


This approach still suffers from the limitation that it does not include skin effect (a small
issue at 60Hz), but it gets us into the ballgame!

Example 5.4: A 6-pole, Y-connected generator is rated at 5MW, 0.85pf lagging, 6.6kV,
and 1200rpm. The following open-circuit and short-circuit data has been collected. You
may assume that the stator resistance is negligible. Determine sfL and SX .
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Solution. From the open-circuit characteristic, we evaluate the slope as

 65.66
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This slope is also equal to
2

sf eL 
and so we need the electrical angular frequency.
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And so we calculate
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To get the unsaturated synchronous reactance, we first evaluate the slope of the short-
circuit characteristic
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Then we can substitute into our expression for the synchronous reactance


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We could then proceed with additional calculations, say calculating the field current to
establish rated terminal voltage for rated power being delivered at the rated power factor,
but enough for now!

5.5 Brushless Excitation System

Our next topic is brushless excitation systems. Recall, the field winding of a synchronous
machine requires DC current. Thus far we have proposed injecting this DC current via
stationary brushes riding upon rotating slip rings (Figure 5.5). The field winding end
connections are attached to the slip rings. Such a contact-based solution requires
maintenance and therefore increases the cost of operation. A brushless excitation system
is one approach to mitigating these costs and it is commonly used shipboard. The
implementation that we will consider also addresses the need for the DC source and the
ability to control the DC source.

Consider mounting the rotor of a second machine on the same shaft as the prime mover
and the main generator (see Figure 5.31). This machine will be called the exciter
machine. The exciter is configured so that its stator produces a stationary magnetic field
of variable strength (Figure 5.32a). The rotor is configured with three phases, spatially
distributed similar to the main generator stator. As the prime mover spins the rotor of the
exciter, a balanced set of three-phase voltages is induced into the rotor windings. Next,
we mount a rectifier onto the rotor shaft (back to Figure 5.31). A rectifier is a power
electronic component that converts AC voltage into DC voltage using diodes. The AC
exciter rotor voltages are inputted to the rectifier, while the DC output is then applied to
the main generator field winding. Since the exciter rotor windings, the rectifier, and the
main generator field winding are all rotating, there is no longer a need for brushes and
slip rings.

We can adjust the field current by adjusting the strength of the stationary stator magnetic
field on the exciter machine. How do we do this? It seems like we still need a DC source
(we do). To create this source, we connect a third machine to the prime mover shaft
called the pilot exciter (Figure 5.31). The pilot exciter has a permanent magnet mounted
on the rotor and a conventional three-phase wound stator (Figure 5.32b). As the prime
mover spins, the permanent magnet essentially becomes a rotating field and a balanced
set of AC voltages are induced into the stator windings. Hmmm, but we need DC to
create the stationary exciter machine field. Thus, we insert a phase-controlled rectifier
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between the pilot exciter AC stator and the exciter DC stator. A phase-controlled rectifier
is a power electronic converter that converts AC into variable DC. Instead of diodes, it
contains thyristors, devices that provide us with control capability. Let’s get this straight:
the AC stator voltages of the pilot are converted to DC by the phase- controlled rectifier,
then applied to the stator of the exciter machine.

Figure 5.31: Brushless Excitation System

The phase-controlled rectifier enables us to control the DC current into the stator of the
exciter machine and thus control the strength of the stationary field. This stationary field
then directly effects the amplitude of the induced AC voltages in the rotor of the exciter
machine. These voltages are converted to DC by a rotating rectifier and then applied to
the main generator field. That’s about it! It’s key to understand that the power
requirements of the field are very small compared to the output of the main generator.
Thus the pilot exciter and exciter machines are relatively small as are the rotating rectifier
and stationary phase-controlled rectifier. The added equipment cost is easily offset by the
reduction in maintenance costs and the elimination of the need for a separate DC source.

5.6 Synchronous Motors

Essentially all of the analysis that we have done to this point is applicable to synchronous
motors. The only difference now is that we will be applying a balanced set of voltages to
the stator windings and we will be converting electrical energy into mechanical energy.
Let’s approach the discussion from an application that the Navy is considering, electric
drive. An electric drive ship uses electric motors directly connected to the propeller (or
waterjet) rather than gas turbines, steam turbines, or diesel engines coupled to the
propeller via reduction gears. The propeller speed is varied by changing the voltage
applied to the motor. So how would this work for a synchronous motor? Let’s go back to
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first principles. For a generator how things worked were as follows. A prime mover
spins the rotor at a speed such that the correct frequency is induced into the stator
windings (we know that governing expression!). When a load is attached to the
generator, stator currents will flow. These currents will create a rotating stator field that
will be synchronously dragged along by the rotating rotor field. The angle of separation
between the two fields will relate to the amount of power and torque that the machine is

Figure 5.32: Configuration of (a) exciter machine and (b) pilot exciter machine

producing. Now to motor operation. Here, we will be applying stator current (via applied
voltages) that will in turn create a rotating stator field. This rotating stator field will drag
along the magnetic field set up on the rotor by placing DC current into the field winding
(though the field winding could be replaced by a permanent magnet). The angle between
the two fields is again related to the amount of power delivered to the propeller or the
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amount of torque being produced (Figure 5.33). But how do we control the speed? Well,
the speed of the stator field is governed by

P

f
N e

m

120


Figure 5.33: Synchronous Machine Motor Operation

So since the poles are fixed, the only way that we can vary mN is to vary the applied

frequency. We could do this by operating a synchronous generator at variable frequency
and sending its output to the synchronous motor or we could do it with power electronics.
An inverter is a power electronic device that converts DC voltage into variable-
amplitude variable-frequency AC voltages. Where does the DC voltage come from?
Most likely from a rectifier attached to some AC generator (see Figure 5.34 for a notional
block diagram). OK, but why does the inverter module need to vary both the amplitude
and the frequency of the applied stator voltages. Well, what we find is that the
synchronous reactance SeS LX  varies with the applied electrical frequency. If we

decrease e without decreasing the voltage amplitude, we will find that we get currents

that are too large and we burn out the machine. A simple means of control is to linearly
change amplitude with frequency. Let’s consider an example.
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Figure 5.34: Example of a Shipboard Electric Drive System

Example 5.5: A notional 16,000 long-ton surface combatant requires 32MW of power
per shaft at a maximum propeller speed of 150rpm. We choose to employ an electric
drive and size an appropriate Y-connected synchronous motor which has  0sr ,

 5.0SX , and 0.1533sfL H . The rated line voltage is 4160V at 60Hz and the rated

speed is srad /71.15
30

150 


. Let’s assume that the field current has been adjusted so

that the motor operates at unity power factor. Find the required excitation voltage and the
corresponding value of field current.

Solution. First we need to evaluate the stator current. We can do this by observing that
at unity power factor
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It follows from our complex power expression that with the current referenced INTO the
machine
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Where we have converted the rated line voltage to an equivalent line-to-neutral voltage
and have selected the terminal phase voltage as being the reference phasor. Solving for
the current gives

 



04441

08.24013

32~* 


 A
V

MW
I as

And flipping the sign on the phase angle gives

04441
~

 AI as

In order to calculate the excitation voltage, we go to the per-phase equivalent circuit with
the current referenced into the machine and perform the KVL loop to yield

    75.423271044415.008.2401
~~~

 VAjIjXVE asSasa

And so the magnitude of the excitation voltage is 3271V and the power angle is
75.42 . Here, we see one noticeable difference between motor and generator

operation. The power angle must be negative for motor operation. To get the required
field current, we use
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Solving for the field current gives AI f 80 . The advantage of operating the motor at

unity power factor is that it requires the smallest amplitude of stator current for the given
amount of real power. This ability to control the power factor is one advantage of a field-
wound synchronous machine.


