
 
Example of when CTFT doesn’t exist, but Laplace transform does 
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Find the CTFT of x(t): 
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Find the Laplace Transform of x(t): 
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 words, 1,   which is also written as Re 1

So if we assume 1,  then
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Since the Laplace transform is not ∞, we say that the Laplace transform converges for any value of 
s jσ ω= + , as long as Re{s} > 1. That is, the “Region of Convergence” (ROC) is Re{s} > 1. 
 
With Laplace transforms, you may be asked to plot the ROC. This is 
done on a plot like that in Figure 1. 
 
On such a plot you should place the poles and zeros of X(s), and 
shade in the ROC. Mark the poles with an X and zeros with a circle. 
 

-A pole of X(s) is a value of s that makes the denominator of 

X(s) = 0. Figure 1: s-plane 

 
-A zero of X(s) is a value of s that makes the numerator of X(s) = 0. 
 

In this example, there are no zeros, but there is one pole at 1  (that is, 1) s jσ ω σ= + = = and the 
ROC is Re{ } 1   (that is, 1) s σ> > . The plot of the ROC would look like: 
 
 
 
 
 
 
 
 
 
 
 
 
Examples: 
 Plot the ROCs for: 
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