
Math 307

THE COMPLEX EXPONENTIAL FUNCTION

(These notes assume you are already familiar with the basic properties of complex

numbers.)

We make the following definition

eiθ = cos θ + i sin θ. (1)

This formula is called Euler’s Formula. In order to justify this use of the exponential
notation appearing in (1), we will first verify the following form of the Law of
Exponents:

eiθ1+iθ2 = eiθ1 eiθ2 (2)

To prove this we first expand the right-hand side of (1) by first multiplying out the
product: eiθ1 eiθ2 = (cos θ1 + i sin θ1)(cos θ2 + i sin θ2). Next we apply to this the
trigonometric identities:

cos θ1 cos θ2 − sin θ1 sin θ2 = cos(θ1 + θ2)

sin θ1 cos θ2 + cos θ1 sin θ2 = sin(θ1 + θ2).

When all this is done the result is

eiθ1 eiθ2 = cos(θ1 + θ2) + i sin(θ1 + θ2).

The right hand side of the last equation is exactly what we would get if we wrote
out (1) with θ replaced by θ1 + θ2. We have therefore proved (2).

To justify the use of e = 2.718. . . . , the base of the natural logarithm, in (1),
we will differentiate (1) with respect to θ: We should get ieiθ. Treating i like
any other constant, we find d

dθ eiθ = d
dθ

(

cos θ + i sin θ
)

= − sin θ + i cos θ. But
− sin θ + i cos θ = i(cos θ + i sin θ) = ieiθ. Thus, as expected,

d

dθ
eiθ = i eiθ (3)

If one does not define eiθ by (1), then one must find some other mean to define
ez and then to derive (1) directly as a consequence. Often the definition of ez is
made using power series with complex numbers z but this requrires a considerable
amount of preliminary work with power series. For a very brief discussion of this
approach, see page 154 in the text.

Some examples: eiπ/2 = i, eπi = −1, and e2πi = +1.

Recall that the relation between the rectangular coordinates (x, y) and the polar
coordinates (r, θ) of a point is

x = r cos θ, y = r sin θ

r =
√

x2 + y2, θ = arctan
y

x
(4)
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where arctan (also called tan−1) is one of the “branches” of the inverse tangent
function. (The quadrant which holds the point (x, y) determines the correct branch
of tan−1.) If z = 0 then r = 0 and θ can be anything. Making use of Euler’s formula,
we can express polar representation in the following manner:

z = x + iy = r(cos θ + i sin θ) = reiθ, (5)

where r = |z| =
√

x2 + y2 and θ is given by (4). The angle θ is also called an
argument of z and we write θ = arg(z).

As noted, there is an ambiguity in (4) about the inverse tangent formula for
θ which can (and must) be resolved by looking at the signs of x and y in order
to determine in which quadrant eiθ lies. For example, if x = 0, then the formula
for θ in (4) makes no sense; but x = 0 simply means that z = 0 + iy lies on
the imaginary axis so θ must be π/2 or 3π/2 depending on whether y is positive or
negative. Again, if z = −4+4i, then r =

√
42 + 42 = 4

√
2 and θ = 3π/4. Therefore

−4 + 4i = 4
√

2e3πi/4.

Note also that, due to the periodicity of sin θ and cos θ, if z = reiθ, then we
also have z = rei(θ+2kπ), k = 0,±1,±2, . . . . Thus, in our last example, −4 + 4i =
4
√

2e11πi/4 = 4
√

2e−5πi/4 etc.

Here is another example: the complex number 2 + 8i may also be written as√
68eiθ, where θ = tan−1(4) ≈ 1.33 rad. See Figure 1.

2 + 8i =
√

68 eiθ

θ = tan−1 4 ≈ 1.33 radians
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Figure 1.

The conditions for equality of two complex numbers using polar coordinates are
not quite as simple as they are for rectangular coordinates. If z1 = r1e

iθ1 and
z2 = r2e

iθ2 , then

z1 = z2 if and only if r1 = r2 and θ1 = θ2 + 2kπ, k = 0,±1,±2, . . .

Despite this the polar representation is very useful when it comes to multplication
and division:

if z1 = r1e
iθ1 and z2 = r2e

iθ2 , then z1z2 = r1r2e
i(θ1+θ2); (6)

z1

z2
= z1z

−1
2 =

r1

r2
ei(θ1−θ2) (z2 6= 0). (7)
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This follows from the Law of Exponents in equation (2) and the rules: |z1z2| =
|z1||z2| = r1r2; |z−1

2 | = 1/r2; arg(1/z2) = arg(z2) = −θ2. For example, let

z1 = 2 + i =
√

5eiθ1 , θ1 = tan−1(1
2) ≈ .464

z2 = −2 + 4i =
√

20eiθ2 , θ2 = tan−1( 4
−2) = π + Tan−1(−2) ≈ 2.034 . . .

(Note: Tan−1 is the principal inverse tangent. It is the quantity computed on most
scientific calculators.) Then z3 = z1z2 where:

z3 =
√

5
√

20eiθ3 = 10eiθ3 ,

θ3 ≈ .464 + 2.034 = 2.498 . . .

This gives z3 ≈ 10(cos(2.498) + sin(2.498) ≈ −7.995 + i6.001. (The exact value is
z3 = −8 + 6i.) We leave it to the reader to find z1/z2 in this example using (7).
(The exact value is −i/2 using the algebraic method.)

Applying (6) to z1 = z2 = −4 + 4i = 4
√

2e3πi/4, gives

(4 + 4i)2 =
(

4
√

2e3πi/4
)2

= 32e3πi/2 = −32i.

Indeed for any positive (or negative) integer it is quite straightforward to show that

If z = reiθ 6= 0, then zn = rneinθ.

This formula makes it quite easy to solve equations such as z3 = 1. Write the
unknown z as reiθ. Then for the equation z3 = 1, we have r3e3iθ = 1 = e0i.
Hence, r3 = 1 and r = 1, because r is supposed to be a positive real number, and

3θ = 0 + 2kπ, k = 0,±1,±2, . . . . It follows that θ = 2kπ/3, k = 0,±1, . . . . There
are only three distinct numbers of the form e2kπi/3, namely: 1 = e0, e2πi/3, and
e4πi/3.

The following figure illustrates the distinct solutions to another equation: z3 =
8i. The solutions (called the cube roots of 8i = 8eπi/2) are: z1 = 2eiπ/6, z2 = 2e5iπ/6,
and z3 = 2e9iπ/6 = −2i.

z1 = 2eπi/6 ≈ 1.7 + iz2 = 2e5πi/6

z3 = −2i
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Figure 2. The three cube roots of = 8i.

Note that these roots are equally spaced on a circle with radius 2 and center 0. The

n distinct nth roots of any complex number w 6= 0 are equally spaced on a circle of

radius |w|1/n centered at 0. One need only locate one of them on the circle. To get

the other n − 1 roots, one rotatates the first one n − 1 times, each time through an

angle 2π/n, marking the points as one proceeds. Each distinct point corresponds to

a distinct root of the equation zn = w. After n rotations one goes right round the

circle and arrives at the initial point.
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From the fact that
(

eiθ
)n

= einθ we obtain De Moivre’s formula:

(cos θ + i sin θ)n = cos nθ + i sinnθ.

Expanding on the left and equating real and imaginary parts, leads to trigonometric
identities which can be used to express cos nθ and sinnθ as a sum of terms of the
form (cos θ)j(sin θ)k. For example with n = 2 one gets:

(cos θ + i sin θ)2 = cos2 θ − sin2 θ + i 2 sin θ cos θ = cos 2θ + i sin 2θ.

Hence cos 2θ = cos2 θ−sin2 θ and sin 2θ = 2 sin θ cos θ. For n = 3, let us set C = cos θ
and S = sin θ. Then (C + iS)3 = C3 + 3iC2S − 3CS2 − iS3, so

cos 3θ = Re {(C + iS)3} = C3 − 3CS2 = 4 cos3 θ − 3 cos θ.

(because S2 = 1 − C2)). One can derive a similar identity for sin 3θ.

1 The exponential of any complex number.

The definition of ex+iy is given by the formula

ex+iy = exeiy (8)

Each term on the right-hand side of (8) already has a well defined meaning. It is
left as an exercise to show that

d

dt
e(a+bi)t = (a + bi)e(a+bi)t (9)

for any complex constant a + bi.

Exercises

1. Let z1 = 3i and z2 = 2 − 2i.

(a) Plot the points z1 + z2, z1 − z2, and z2.

(b) Compute |z1 + z2| and |z1 − z2|.
(c) Express z1 and z2 in polar form.

2. Let z1 = 6eiπ/3 and z2 = 2e−iπ/6. Plot z1z2, and z1/z2.

3. (a) Find and plot all complex numbers which satisfy z3 = −8.

(b) Find all complex numbers z = reiθ, which satisfy z2 =
√

2eiπ/4.

4. Verify (9). Note that e(a+bi)t = eat · eibt. Use the product differentiation rule on
this. You can differentiate eibt by means of (3) and the chain rule. You will still
have some algebra to do to get the form on the right of (9).

5. Find an identity for sin 3θ using n = 3 in De Moivre’s formula. Write your
identity in a way that involves only sin θ and sin3 θ if possible.
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6. This problem explains the first real use of complex numbers. A cubic equation
can be tranformed into the form:

x3 = 3px + 2q,

where p and q are constants by replacing x with ax+ b and multiplying the cubic by
a constant. The graph of the right side is a straight line which must cross the graph
of x3 and therefore there must be a (real) solution to the cubic. Cordano found a
formula:

x =

(

q +
√

q2 − p3

)1/3

+

(

q −
√

q2 − p3

)1/3

.

Try finding the solution to x3 = 6x + 6 using this formula (p = 2 and q = 3).

Here is where complex numbers arise: To solve x3 = 15x + 4, p = 5 and q = 2,
so we obtain:

x = (2 + 11i)1/3 + (2 − 11i)1/3.

Even though this looks like a complex number, it actually is a real number: the
second term is the complex conjugate of the first term. Check that (2+i)3 = 2+11i,
and thus the solution is x = 4.
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