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fs = 1/Ts

Choose N samples of x(t), starting w/n=0 --
Compute DFT(FFT) using these samples

-To approximate the frequency content w/the DFT (FFT), first 
sample the analog signal:
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-The amplitude of each frequency component is computed by:

-The DFT(FFT) breaks the signal x[n] into its frequency 
components (in terms of discrete complex exponentials):

-If there are N samples of the time signal, then there are N values of 
X[k] (which is the DFT).
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-Frequency resolution of the frequency plot: Δf = fs/N, so that the highest 
frequency on the plot is fs/2. 
-This agrees with Nyquist theory—if we sample at fs samples/sec, the 
highest frequency content of the analog signal is assumed to be fs/2 Hz.

-The N values of the DFT (magnitude only shown):

-Only need the 1st half of the  DFT values (2nd half is a complex 
conjugate mirror image for real-valued time signals) :


