
EE322 Lab 03: DTMF Signal Generation

Introduction

 In this lab, you will write functions to generate dual-tone multi-frequency (DTMF) signals, the kind you
hear using a touch-tone phone. These signals are sums of two sinusoids, but realize that a continuous signal
(such as a sinusoid) cannot actually be created in MATLAB, as computers can only approximate them with
discrete signals. These discrete signals are sampled versions of the continuous-time function, and the
samples are T seconds apart. This means that the continuous signal is sampled at a sample frequency of fs =
1/T samples per second. The sampling of a CT signal is illustrated in Fig. 1 below.

 There is a minimum rate at which an analog signal may be sampled (called the Nyquist rate), which is
twice the highest frequency content of the analog signal—more on this later in the course. So any signal
that you wish to create in MATLAB is subject to the Nyquist rate criteria.

 A table that summarizes the tones associated with each button on a touch-tone phone is shown below.
Note that the last column is not used on a typical touch-tone phone (digits A, B, C and D), but can be used
for data transmission.

Since DTMF tones are pairs of sinusoids, for each digit of a phone number you will need to create two
separate sinusoids (use cosines), with the two frequencies as given in the table above, and add them
together. We must be concerned that the sinusoids we create are subject to the Nyquist criteria. The
minimum sample rate to be used with DTMF tones, given the table above is 2 x 1633 Hz = 3266
samples/sec (or also referred to as 3266 Hz). This is because 1633 Hz is the highest-frequency sinusoid we
will use. For this lab, we will use a sample frequency higher than the Nyquist rate, fs = 12000 Hz.

I. DTMF Functions
Use the sample function contained in the course policy statement to guide you in writing your
functions.

 A. isvalidDTMF.m

Write a function called isvalidDTMF that will test if an input character is a valid DTMF
identifier. The valid DTMF identifiers are: ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’,
‘7’, ‘8’, ‘9’, ‘*’, ‘#’, ‘A’, ‘B’, ‘C’, and ‘D’.

Some examples of how it will be used:

>> y = isvalidDTMF(‘5’);

or

>> a = ‘2’;, v = isvalidDTMF(a);

Note: the input MUST be a one-character string (in single quotes)!!! The input MUST NOT be
numbers!!!

This will return the variable y, which is a 1 if the input is a valid DTMF identifier, or 0 if not.
If any one of the above 16 characters are input, this function outputs a 1. If not, the function
should output a 0. To be a valid DTMF identifier, the input MUST be only one of the above
characters…that is, an input like ‘13’ or ‘A1#’ or ‘z’ is NOT valid.

 B. create_DTMF.m

Write a DTMF function called create_DTMF.m that will create a DTMF tone for any of the 16
digits in the table above. There will be three inputs, the digit (a string one character long,
entered in single quotes by the user), the time duration in seconds (also entered by the user),
and the sample frequency. You can use if / elseif statements to create the proper DTMF tone.

This function must call your isvalidDTMF function to check if the input is a valid DTMF
character or not.

An example of how it will be used:

>> y = create_DTMF('5 ',1.2,12000);

This will return the variable y, which is the DTMF tone for the digit '5 ' that lasts for 1.2 sec,
with sample frequency 12 kHz. Note: for this lab, the sample frequency will ALWAYS be 12
kHz.

IMPORTANT: This function should NOT PLAY ANY SOUND! The soundsc function
should NOT appear in it. This function ONLY creates the DTMF signal output.

 C. create_silence.m

Write a function that will produce a period of silence (zero values), at an input sample
frequency. The two inputs to this function will be the time duration in seconds and the sample
frequency. This function will be called create_silence.

An example of how it will be used:

>> y = create_silence(1.5e-3,12000);

This will return the variable y, which is a period of silence (all zero values) that lasts for 1.5
milliseconds (with sample frequency 12 kHz). Note: the simplest way to do this is to create the
proper time vector, then let the output be equal to zero times the time vector.

WARNING: the silence function should NOT attempt to play any sound (i.e., the soundsc
function should NOT be called inside of this function).

II. Phone Numbers

 A. In this section you will write a MATLAB program that will create and play a set of multiple
DTMF tones.

 1. Write a MATLAB program called phone_number.m that creates and plays the DTMF
tones corresponding to a 10 digit phone number that a user inputs (use the input function
with the ‘s’ option so that the input is read as a string). The user inputs the phone number
in the form below (14 characters long):

1-xxx-xxx-xxxx (e.g., 1-410-293-6152, which is Prof. Ives’ phone number)

Note that the format ALWAYS starts with a “1”, includes the area code, and contains 3
dashes in the correct locations. The other entries MUST each be a digit 0-9 (note: not all
DTMF characters are digits!). If the format is not correct, or the user enters an incorrect
character, then an error message is displayed.

Hint: you can use a “for” loop to cycle through characters in a character string.

Hint: the characters for digits ‘0’ through ‘9’ are consecutive characters, so you can use a
> or < sign when testing if a character in a string is a digit.

Create the overall DTMF signal using your create_DTMF function and create_silence
functions. Don’t forget that you can combine vectors (signals) together using a command
such as:

>> s=[d1 s d2 s d3]; % here, d1, d2 and d3 are three digit signals, and s is silence

In this program, each DTMF tone should last for 50 msec, and the silence in between
each digit should last for 100 msec. After creating the signal composed of ALL the digits
and ALL the silences in between, play it using the soundsc function at the correct sample
frequency (12 kHz). Demonstrate that your program works correctly for the professor for
any phone number he inputs, and handles errors correctly.

 For your write-up, turn in your isvalidDTMF.m, create_DTMF.m, create_silence.m
and phone_number.m code. Your code should have COMMENTS to help me
determine how you’re going about doing things—you will be marked down if you
lack sufficient comments!

Demonstrate your phone_number program for the professor. He will test your
program using erroneous as well as correct phone numbers.

BONUS !! (turn this page over)

III. Bonus—Do not seek assistance from another mid.

 1. To get an extra 2% on this lab, create a function for the dial tone, called dial_tone.m. The dial-
tone is comprised of the sum of a 350 Hz cosine and a 440 Hz cosine. Your function should
have two inputs: time duration and sample frequency. It should return the dial tone signal.

 2. To get an extra 5% on this lab, write a function that creates the busy signal, called
busy_signal.m. This signal is the sum of a 480 Hz cosine and a 620 Hz cosine, which is on for
0.5 sec and off for 0.5 sec. Your function should have two inputs: time duration and the sample
frequency. It should return the busy signal.

 Demonstrate your functions to the professor for the bonus credit.

