
EE322 Lab 03: DTMF Signal Generation

Introduction

 In this lab, you will write functions to generate dual-tone multi-frequency (DTMF) signals, the kind you
hear using a touch-tone phone. These signals are sums of sinusoids, but realize that a continuous signal
(such as a sinusoid) cannot actually be created in MATLAB, as computers can only approximate them with
discrete signals. These discrete signals are sampled versions of the continuous-time function, and the
samples are T seconds apart. This means that the continuous signal is sampled at a sample frequency of fs =
1/T samples per second. The sampling of a CT signal is illustrated in Fig. 1 below.

 There is a minimum rate at which an analog signal may be sampled (called the Nyquist rate), which is
twice the highest frequency content of the analog signal—more on this later in the course. So any signal
that you wish to create in MATLAB is subject to the Nyquist rate criteria.

 A table that summarizes the tones associated with each button on a touch-tone phone is shown below.
Note that the last column is not used on a typical touch-tone phone (digits A, B, C and D), but can be used
for data transmission.

Since DTMF tones are pairs of sinusoids, for each digit of a phone number you will need to create two
separate sinusoids (use cosines), with the two frequencies as given in the table above, and add them
together. We must be concerned that the sinusoids we create are subject to the Nyquist criteria. The
minimum sample rate to be used with DTMF tones, given the table above is 2 x 1633 Hz = 3266
samples/sec (or also referred to as 3266 Hz). This is because 1633 Hz is the highest-frequency sinusoid we
will use. For our work, we will use a sample frequency higher than the Nyquist rate, fs = 8000 Hz.

I. DTMF Functions

 A. isvalidDTMF.m

Write a function called isvalidDTMF that will test if an input character is a valid DTMF
identifier. The valid DTMF identifiers are: ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’,
‘7’, ‘8’, ‘9’, ‘*’, ‘#’, ‘A’, ‘B’, ‘C’, and ‘D’.

Some examples of how it will be used:

>> y = isvalidDTMF('5 ');

or

>> a = ‘2’;, v = isvalidDTMF(a);

Note: the input MUST be a string variable, or a digit in single quotes!!!

This will return the variable y, which is a 1 if the input is a valid DTMF identifier, or 0 if not.
If any of the above 16 characters are input, this function outputs a 1. If not, the function should
output a 0. To be a valid DTMF identifier, the input MUST be only one of the above
characters…that is, an input like ‘13’ or ‘A1#’ is NOT valid.

 B. create_DTMF.m

Write a DTMF function called create_DTMF.m that will create a DTMF tone for any of the 16
digits in the table above. There will be two inputs, the digit (a string one character long,
entered in single quotes by the user), and the time duration in seconds (also entered by the
user). The sample frequency will always be 8000 Hz. You can use if / elseif statements to
create the proper DTMF tone.

This function must call your isvalidDTMF function to check if the input is valid or not.

An example of how it will be used:

>> y = DTMF('5 ',1.2);

This will return the variable y, which is the DTMF tone for the digit '5 ' that lasts for 1.2 sec
(with sample frequency 8 kHz).

IMPORTANT: This function does NOT PLAY ANY SOUND! The soundsc function should
NOT appear in it. This function ONLY creates the DTMF waveform output.

 C. create_silence.m

Write a function that will produce a period of silence (zero values), at a sample frequency of
8000 Hz. The only input to this function will be the time duration in seconds. This function
will be called create_silence.

An example of how it will be used:

>> y = silence(1.5e-3);

This will return the variable y, which is a period of silence (all zero values) that lasts for 1.5
milliseconds (with sample frequency 8 kHz). Note: the simplest way to do this is to create the

proper time vector, then let the output be equal to zero times the time vector.

WARNING: the silence function should NOT attempt to play any sound (i.e., the soundsc
function should NOT be called inside of this function).

II. Phone Numbers

 A. In this section you will write a MATLAB program that will create and play a set of multiple
DTMF tones. First, you will learn to use the MATLAB input function, which prompts a user
for input. We will want the input phone number to be entered into MATLAB as a string.

 1. Run this command at the MATLAB command prompt:

>> s=input('Input your zip code: ','s')

The 's' tells MATLAB to read the input as a string. How many letters are in the string
you entered? After you run this command, use the MATLAB length command to
determine this:

>> length(s)

What is the 4th letter in string s? Use the following to determine this:

>> s(4)

This was a brief introduction to strings and the input and length commands. Now you
will use them to create a signal that represents a user input phone number in DTMF
tones.

 2. Write a MATLAB program called phone_number.m that prompts a user to input a phone
number (or any series of valid DTMF characters) that will be played over the speakers.
The input function should be used in your program to get the phone number from the
user. The phone number is entered as a string (i.e., use input like you did in the previous
step for the zip code).

You can use the length function to determine the input string’s length, then use a for loop
to cycle through and create each DTMF tone. If the string contains any invalid
characters, the program should detect the error, and tell the user to try again.

Create the overall DTMF signal using your create_DTMF function and create_silence
functions. Don’t forget that you can combine vectors (signals) together using a command
such as:

>> s=[d1 s d2 s d3]; % here, d1, d2 and d3 are three digit signals, and s is silence

Each DTMF tone should last for 50msec, and the silence in between each digit should
last for 100msec. After creating the signal composed of ALL the digits and ALL the
silences in between, play it using the soundsc function at the correct sample frequency (8
kHz). Demonstrate that your program works correctly for the professor, who will input a
valid string of characters and an invalid string of characters.

 For your write-up, turn in your isvalidDTMF.m, create_DTMF.m, create_silence.m
and phone_number.m code. Your code should have COMMENTS to help me
determine how you’re going about doing things—you will be marked down if you
lack sufficient comments!

Demonstrate your phone_number program for the professor.

BONUS !! (turn this page over)

III. Bonus—Do not seek assistance from another mid.

 1. To get an extra 2% on this lab, create a function for the dial tone, called dial_tone.m. The dial-
tone is comprised of the sum of a 350 Hz cosine and a 440 Hz cosine. Your function should
have one input: time duration. It should return the dial tone signal, sampled at 8000 Hz.

 2. To get an extra 5% on this lab, write a function that creates the busy signal, called
busy_signal.m. This signal is the sum of a 480 Hz cosine and a 620 Hz cosine, which is on for
0.5 sec and off for 0.5 sec. Your function should have one input: time duration. It should return
the busy signal, sampled at 8000 Hz.

 Demonstrate your functions to the professor for the bonus credit.

