
EE322 Fall 2008 Lab 08: Continuous-time Fourier Series (CTFS)

Introduction

 In this lab you will calculate the Harmonic function (also called Fourier series coefficients) for two
different input signals, and then plot the result in MATLAB. Recall that using the CTFS, a signal x(t) can
be represented exactly over the time interval 0 0 Ft t t T≤ ≤ + by:

()2() [] Fj kf t
F

k

x t X k e π
∞

=−∞

= ∑ (1)

where
1

F
F

f
T

= and

()
0

0

21[] ()
F

F

t T
j kf t

F t

X k x t e
T

π
+

−= ∫ dt

3

 (2)

(X[k] is the Harmonic function)

I. Theoretical Problems

 A. Suppose we want to represent the rectangular pulse
x(t) (shown to the right) exactly over the time
interval , using complex exponentials. 3 t− ≤ ≤

 1. What is the fundamental period TF for this problem?

 2. Calculate the Harmonic function X[k] for this signal using equation (2) above.

 3. Rewrite the expression for X[k] in terms of a sinusoid, or a sinc function.

 4. Write the equation for xF(t) using equation (1) above and the X[k] you computed.

 B. Suppose we want to represent the cosine pulse x(t)
(shown to the right) exactly over the time interval

1
2 2t− ≤ ≤ 1 , using complex exponentials.

 1. What is the fundamental period TF for this problem?

 2. What is the frequency and period of the cosine associated with this pulse?

 3. What is the expression for x(t) that would provide the curve shown between 1 1
4 4t− ≤ ?

That is, write x(t) as the product of a cosine and a rect function.
≤

 4. Calculate the Harmonic function X[k] for this signal using equation (2) above. A useful
formula to calculate this is given in equation (3):

() ()2 2cos() cos sin
ax

ax ebx e dx a bx b bx
a b

= +⎡ ⎤⎣ ⎦+∫ (3)

 5. Write the equation for xF(t) using equation (1) above and the X[k] you determined.

Once you have completed this portion of the lab, you are advised to let the
instructor see your results. After these are satisfactory, continue to Part II:

MATLAB simulations.

II. MATLAB Simulations

 A. Some important things to remember about MATLAB:

 1. The m-files you write for your MATLAB functions SHOULD HAVE THE SAME
NAME as the function itself.

 2. DO NOT name a function or program you write the same name as an existing MATLAB
function. If you are unsure whether or not to call your function a certain name, use the
which command to see if MATLAB already has a function by that name. For example, if
you want to call your function “plot”, type

 >> which plot

and if it already exists, MATLAB will let you know. In this case, you should choose
another name for your file.

 3. Code you turn in REQUIRES comments to help me understand what your intent is in
various sections of the program or function. You can/will be marked down for
insufficient comments.

 4. If your program should work, but for some reason you’re getting an error, use the which
command to see which version of that function MATLAB is using. Don’t forget that
there are other Midshipmen who are creating functions using the same names as yours, so
you may be attempting to run their functions. If this is the case, you can just change the
MATLAB directory to be the one where your programs are located.

 B. Download the ee322_CTFS_demo.m program and the unit_step.m function from the course
website if you don’t have your own unit step function from PS10. The demo program will
compute and plot the magnitude and phase of the Harmonic function (X[k]) for the continuous-
time Fourier series representation of 2 , 0 2.te t− ≤ ≤ When run, the value of variable N in line
#11 of the m-file determines how many pairs of complex exponentials are to be used to
compute this function (since we can’t compute an infinite number, as equation (1) would have
us use). In the code you download, N=2, so the infinite sum approximation is only computed
from k=−2 to k=2 (2 pairs of complex exponentials + the dc term, 5 total terms). The demo
program will take those coefficients and compute and display an approximation for

 using only those 5 terms. 2 , 0 2te t− ≤ ≤

Adjust the value of N in this program to N=5, 17 and then 39 and run the program. Notice that
the more complex exponentials used, the closer the approximation gets to the original signal.

Note: since X[k] is a discrete function, when it is plotted, the program uses the MATLAB stem
function instead of plot. The stem function draws “lollipops” for each sample value (which is
how we draw discrete functions), while the plot function connects the sample values with a
straight line, to make it look like a continuous-time function.

C. Modify this demo code for use on the rectangular pulse from part I.A of this lab. To modify
this program, you must create a rectangular pulse in the code instead of the decaying
exponential. Be sure to set the start and stop time for the pulse itself correctly, using the figure
in part 1A, with time vector t = −3:0.001:3.

→

Note: a rectangular pulse can easily be created in MATLAB using the rectpuls
function, or your rect or unit step function from PS10…to learn how to use rectpuls,
type

>>help rectpuls

at the command line to learn how to use it. The other option is to create it using the
unit_step function, available from the course website.

When using the student edition of MATLAB for this problem, you could download the
rectpuls322.m file from the course website to create a rectangular pulse if rectpuls is not
otherwise available in your version of MATLAB.

WARNING: be careful how your program computes X[0]. If you tell MATLAB to evaluate an
expression that turns out to be 0 divided by 0, or anything divided by 0, you probably won’t get
what you expect. In your loop that computes and add the X[k]’s, you may need to test if k==0,
then perform a special computation using L’Hopital’s rule:

if
() 0
() 0t a

x t
y t =

= , then
() ()
() ()t a t a

x t x t
y t y t= =

′
=

′
.

 1. Include your code in the lab report, and plots that have the original rectangle, and
approximations to the rectangle using N=5, 10 and 50, all on the same plot. You can have
all of these plots in one figure using the hold on command, or with a command such as:

>> plot(t,orig, t,x5, t,x10, t,x50).

if you have created the signals x5, x10 and x50.

 2. Remember that the CTFS allows us to represent a non-periodic signal only over a finite
time interval, TF, which becomes the “fundamental period”. This means that the CTFS is
actually representing a non-periodic signal as a periodic signal with period TF. If you
expand the time frame that you observe the result, you will see a periodic signal. To test
this, rerun your program except change the time vector of -10:0.01:10, and use N=10. Do
you get what you expect? Include this plot and your answer in your writeup.

→ D. Using the same sample code available from the course website, write a program that will
approximate the cosine pulse from part I.B of this lab. Realize that the cosine pulse can be
thought of as the product of a cosine and a rectangle. Be sure to set the start and stop time for
the cosine pulse itself correctly, using the figure in part 1.B, with time vector t =

−0.5:0.001:0.5.

WARNING: be careful how your program computes X[1] and X[−1]. In your loop that
computes and adds the X[k]’s, you may need to test if the absolute value of k==1 (that is, if
abs(k) == 1) then perform a special computation using L’Hopital’s rule.

 1. Include your code in the lab report, and plots that have the original cosine pulse, and
approximations to the cosine pulse using N=5, 11 and 41. You can have all of these plots
in one figure using the hold on command, or with a command such as:

>> plot(t,orig, t,x5, t,x11, t,x41).

 2.. Now rerun your program with a time vector of -2:0.001:2, using N=41. Include this plot
in your writeup. Do you get what you expect? What electrical device might provide
output that looks like this when an AC voltage signal is passed through it? Explain.

 3.. Zoom into the sharp edges at t = -0.25 and t = +0.25 if necessary to see that the code
only provides an approximation to the original pulse, since we’re not using an infinite
number of complex exponentials.

For the writeup for this lab, be sure to include: answers to all questions asked,
derivation of the X[k]’s (handwritten on a separate page), and provide code and

plots.

