
EE322 Lab 11: Synthesis of Musical Notes Using MATLAB

In this lab, you will write a MATLAB program to play portions of a song of your choice. To do this, a basic
understanding of the layout of a piano keyboard and written music is required first.

Piano Keyboard Layout and Octaves

You’ve all heard notes played on a piano at one point or another in your life. A portion of the keyboard layout is
given in Fig. C.2 below. All of the following figures and discussion of the keyboard are from the textbook “DSP First: A
Multimedia Approach” by James McClellan et al.

Note: the
black keys
are “sharp”
or “flat”
notes

In this figure, notice that specific notes (musical tones) are identified by their “octave” number, and the letters
A,B,…,G. The keyboard is divided into octaves, where the notes in each octave are twice the frequency of the notes in the
next lower octave. As an example, suppose we pick as a reference note the A4 note. This is usually designated “A-440”
since it is the A note with frequency of 440Hz. Note that each octave contains 12 notes (5 black keys and 7 white keys).
Since the ratios of the frequencies between each octave is 2, the next higher A note (in octave 5) would be at frequency
2x440Hz = 880Hz. This means that the ratio of adjacent notes differ in frequency by a factor of 21/12. To summarize, for the
octave of 12 notes that runs from A4 up to A5, we have:

 Key

Number Note Frequency

49 A 440Hz

50 A# (“A-Sharp”) or
BBb (“B-Flat”) 440Hz × 21/12 = 466.16Hz

51 (B4) B 440Hz × 22/12 = 493.88Hz
52 C 440Hz × 23/12 = 523.25Hz

53 C# (“C-Sharp”) or
Db (“D-Flat”) 440Hz × 24/12 = 554.37Hz

54 D 440Hz × 25/12 = 587.33Hz

55 D# (“D-Sharp”) or
Eb (“E-Flat”) 440Hz × 26/12 = 622.25Hz

56 E 440Hz × 27/12 = 659.26Hz
57 F 440Hz × 28/12 = 698.46Hz
58 F# (“F-Sharp”) 440Hz × 29/12 = 739.99Hz
59 G 440Hz × 210/12 = 783.99Hz

O
ne

 O
ct

av
e—

th
e

4th
 O

ct
av

e
 (1

2
N

ot
es

)

60 G# (“G-Sharp”) 440Hz × 211/12 = 830.61Hz
 61 A 440Hz × 212/12 = 880Hz

Question: What is the frequency of the sinusoid corresponding to key number 48?

Answer: Since the frequency of key 49 is equal to 21/12 times the frequency of key 48, then key 48 is 2−1//12 times the
frequency of key 49: 440Hz × 2−1/12 = 415.30Hz.

Musicians read sheet music, which tells them which notes to play and how long to play each note. The notes (filled or
unfilled ovals) are annotated on a music score. Each “line” of music on the score consists of 5 horizontal parallel lines.
Each note’s position within these parallel lines will determine the frequency of the note, and its shape will determine how
long the note is to be played compared to the other notes. A note that sits higher on the “line” of music will have a higher
frequency when played. Notes may also be placed above the “line” of music (very high frequency notes), or below the
“line” of music (very low frequency notes). Fig. C.3 is an example of one “line” of sheet music.

Note how each note is on a line or in between each
line. Successive key numbers climb up the scale.

Another view of the key numbers and the musical scale:

The following is code for a MATLAB function (the file is called note06.m and can be downloaded from the course website)
that will create the tone signal that synthesizes the music. A user of this function will input the key number they wish to
play, and how long it is to be played (duration, in seconds).

function tone = note06(keynum,dur)
%
% function tone = note06(keynum,dur)
%
% This function will produce a sinusoidal waveform corresponding to a
% given piano key number. Harmonics are added to each tone to mimic a
% clarinet.
%
% tone = the output sinusoidal waveform
% keynum = the piano keyboard number of the desired note
% dur = the duration (in seconds) of the output note
%
% Author: Robert W. Ives, US Naval Academy 11/29/06

fs = 13824; % this is the sample frequency, 13824 samples of the sinusoid
per second
T = 1/fs; % this is the time interval between samples
N=dur*fs; % number of samples for this note
tt=(0:N-1)*T; % the time vector, with time values separated by T and the
whole vector being "dur" sec long

% The following vector (h) represents the harmonic levels for a clarinet. The
% first element of h is the fundamental frequency's amplitude, the 2nd
% element is the 1st harmonic's amplitude, etc. Note that depending on the
% note being played, the harmonics actually will change, so this is a
% single approximation, and may not sound too much like a clarinet for
% notes that are too high or too low.

h=[1 0.04 0.99 0.12 0.53 0.11 0.26 0.05 0.24 0.07 0.02 0.03 0.02 0.03]; %
harmonic amplitudes

% The following line creates the proper frequency for the tone…if keynum
% is > 49, the freq is higher than 440 Hz
% If keynum = 49, then this is the A-440 note, and if keynum is < 49,
% the freq is lower than 440 Hz
freq = (440 * 2 ^ ((keynum - 49)/12))*(1:length(h));
 % the frequencies of the harmonics

tone=zeros(1,length(tt));

for k=1:length(h)
 scale=h(k);
 f0=freq(k);
 tone=tone+scale*cos(2*pi*f0*tt);
end

% The following line applies a window to each note that gradually increases
% the volume of the sinusoid, then gradually lets it fade. This window
% makes the sinusoid more human-like.
tone = tone .* tukeywin(length(tone))';

if (keynum==0) % this creates a “rest” note (silence)
 tone=tone*0;
end

 Don’t forget that in order to play back a tone you create use the soundsc function, and specify the sample
frequency! The sample frequency you use should be the same one used in the note06 function, which is 13,824 Hz. Also, if
you wished to join some notes you create together to play a tune, MATLAB can easily do that…if a1, a2 and a3 are notes
you create, and you want to play them back one right after the other, the command:

>> fs=13824;
>> b=[a1 a2 a3];

will create a single vector that contains the three notes. Then

>> soundsc(b,fs);

can be used to playback these three notes.

Download and review the note06.m function that will create notes for you, and the MATLAB program that will play the
following portion of the “Twinkle, Twinkle, Little Star” song, shown in Fig. C.9 (called ee322lab11music.m). All of the
quarter notes are the same time duration, 0.5 second each; the half note should last twice as long. This involves analyzing
the music score to turn each note into a key number and duration, creating each note, and then combining the notes into one
vector that the function soundsc can play.

half note quarter notes

Write down the
key numbers
 you are using
 along here → 52 52 59 59 61 61 59 57 57 56 56

After downloading the two m-files, run ee322lab11music.m to see how it sounds. Change the duration of a quarter note (1
beat) to speed it up or slow it down and listen to the effect.

Note: You commonly see musicians tapping their feet when they play. Quarter notes last for 1 “beat” (one tap of the foot),
while half notes last for 2 beats (twice as long as quarter notes). It is up to the person playing the music to determine how
long a beat should last, unless you’re part of an orchestra or band where the conductor determines how fast notes are
played. In this program, 1 beat = 0.5 seconds.

When viewing sheet music, you are usually presented with two separate sets of notes that are to be played simultaneously
by two (or more) different instruments, or using the left and right hands at the same time on the piano. The two sets are
identified using the treble clef (that we used above), and the bass clef. Figure C.3 below is an example of how the notes
differ in each. Note that the bass clef note key numbers are lower than for the treble clef: so the tones they represent are of
lower frequency.

In order to play more than one note at a time, the notes must be created separately, and then added together (but
remember that you can only add signals together if they have the same length). In order to combine the music from the
treble clef and base clef, their respective signals should be added together. For example if the treble signal is

>> treble = [a1 a2 a3];

and the bass signal is
>> bass = [b1 b2 b3];

then for bass and treble to play at the same time, add them together:
>> song = [treble + bass];

Now listen to the combined bass and treble signals:
>> soundsc(song, fs);

Important Note: This addition of vectors only works if the two vectors (such as “bass” and “treble”) are the same
length!! If not, MATLAB will give you an error message, saying:

??? Error using ==> plus
Matrix dimensions must agree.

The reason they may not be the same length is probably because you either forgot a note or notes, or inserted the wrong
length notes. For this reason, it is a GOOD idea to build your song in pieces, perhaps one line at a time, then check to see if
it works okay.

Exercise

You can team with another classmate to perform the following, if desired (no more than 2 per group). If you don’t have a
musical background, get a partner who has one. Choose one of the available songs on the course website and write a
MATLAB program that will play your chosen, using at least the treble clef, but if you’re more advance, using both the bass
and treble clefs. In the latter case, one partner should work on the bass clef notes, and one on the treble clef notes, to come
up with two individual signals that can be added together. Use the ee322lab11music.m file as a starting point. Play the
music you’ve created for the professor before the end of the lab period. Hopefully you’ll have a complete song.

Suggestion: create small portions of the song at a time, then check to make sure they sound okay. After each portion
sounds okay, join them together to make a larger portion. As the bass and treble music is created, add the two signals
together and then use the soundsc function to play them (sample frequency is 13824 Hz).

Note: Music typically contains “rests”, in which no tones are played. You can use your notes06 function for this, because
of the lines at the bottom of the function to check if the keynum entered was equal to 0, as follows:

if keynum==0
 tone=tone*0; % just provides a string of zeros out
end

The following is some additional reference material for reading music.

Let’s assume the variable you created was composed of treble and possibly bass and called “song”. Do the following:
>> song1=song/max(abs(song(:))); % normalizes the values to fall between -1.0 and 1.0
>> wavwrite(song1,13824, '<filename>.wav'); % use the title of your song instead of <filename>, include the correct
 % sample frequency (which is 13824).

A segment of the “Fur Elise” selection:

A segment of Aretha
Franklin’s “Respect”:

