
Chapter 1:  Counters and State Machine Design

1.1   Introduction

Up until this point you have been studying combinatorial logic.  The circuits you assemble out of AND, OR and NOT gates have definite limitations.  Most notably, such circuits have no memory.  Their output depends only on their present input.  However, if you think about it, most complex computing functions require some level of memory.  This requires moving beyond combinatorial logic to sequential logic.  Sequential logic circuits have memory.  This chapter begins by reviewing flip-flops, which are the building blocks for sequential logic.

Using sequential logic, we will then describe how to build a state machine, which is a system that consists of a finite number of states, the transitions between those states, and actions.   A traffic light controller is an example of a simple state machine.  Your computer is a state machine, too.   In fact, most systems can be described in terms of state machines.   Counters are an important sub-category of state machines in which the states progress in a repeating pattern, so we’ll start there and then move on to more complex state machines. 

1.2   Sequential Logic Modules Review

Flip-flops are the fundamental building blocks from which counters and state machines are made.   Before entering into a discussion of counters and state machines, therefore, we need to review the behavior of these basic circuit blocks.    We will review 4 basic types of flip-flops:  the Clocked SR Flip-Flop, the D Flip-Flop, the JK Flip-Flop and the T Flip-Flop.

1.2.1   Clocked SR Flip-Flop

The symbol and truth table for the clocked SR Flip-Flop is shown below in Figure 1‑1.  The inputs for this flip-flop are R (“reset”), S (“set”) and C (“clock”).  The outputs are Q, the state of the flip-flop, and not Q which should always be the opposite of Q.  In the truth table, Qn represents the present state of the flip-flop, and Qn-1 represents the previous state of the flip-flop.  The x’s in the input columns of the truth table indicate when an input could be either a 1 or a 0 and have the same effect (they’re a short-hand way of condensing two lines of the truth table into 1).  

The truth table tells us that the flip-flop will maintain the same state as long as the clock is off or both R and S are 0.  If, however, R is 1 when the clock is on, the flip flop will “reset” to 0.  On the other hand, if S is 1 when the clock is on, the flip-flop will “set” to 1.   Trying to both reset and set at the same time is simply not allowed (in reality this would result in Q being the same as
[image: image1.wmf]Q

 and likely cause errors in the sequential logic circuit).
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Figure 1‑1:  Symbol and truth table for SR flip-flop

The behavior of this flip-flop can be demonstrated through the use of a timing diagram.  These are plots which show the behavior of the variables in a sequential logic circuit over time. For this example, arbitrary inputs were assumed and the resulting output shown.  Note that both the clock and the set or reset input must be high before the output responds. 

Before moving on to other flip-flops, we should pause to discuss the concept of a clock. The clock input is generally a square wave like the one shown in Figure 1‑2.  The purpose of the clock is to keep a steady beat throughout the system, keeping everything in step like a drum for a parade.  But with a clock response like the SR flip-flop, there’s still some wiggle room because of the width of the “on” part of the clock.  This can cause different parts of a large sequential logic circuit to fall slightly out of step.  We need a crisper drum beat, and we get that with “edge-triggered” flip-flops.  The D, JK and T flip-flops are all examples of edge-triggered flip-flops.
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Figure 1‑2: Timing diagram example for SR flip-flop

1.2.2   The D or Delay Flip-Flop

An edge-triggered flip-flop only responds to the other inputs at points when the clock is transitioning between states.  The transition time is almost instantaneous on the scale of the system, and therefore results in a sharper decision point.   Such flip-flops can either be positive-edge-triggered or negative-edge-triggered.  Positive-edge-triggered (or “leading-edge-triggered”) flip-flops respond to inputs when the clock transitions from low to high, while negative-edge-triggered (or “trailing-edge-triggered”) flip-flops respond when the clock transitions from high to low, as is illustrated in Figure 1‑3.  
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Figure 1‑3: Clock signal

The D or “delay” flip-flop is one example of an edge-triggered flip-flop.  The symbol and truth table for a positive-edge-triggered D flip-flop is shown below in Figure 1‑4.  Note the triangle at the “C” input on the symbol—this denotes that the flip-flop is edge triggered.   Furthermore, the absence of a bubble at the C input indicates that it is positive-edge-triggered.  In the truth table, the arrow pointing up denotes the leading edge of the clock pulse.
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Figure 1‑4: Symbol and truth table for D flip-flop

An example of a timing diagram for a D flip-flop is shown in Figure 1‑5 below.  Note that the state of the flip-flop follows the input but with a delay, hence the name for this flip-flop.
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Figure 1‑5: Example of timing diagram for D flip-flop

1.2.3   JK and T Flip-Flops

The JK flip-flop exhibits a more complex behavior.  Its symbol and truth table for a negative-edge triggered JK flip-flop are shown below in Figure 1‑6.  Note how the negative-edge trigger is indicated by the bubble and the triangle on the clock input of the symbol.  The negative-edge is denoted by a downward-pointing arrow in the truth table.  This flip-flop is like an edge-triggered RS flip-flop where K is the reset input and J is the set input.  Unlike the RS flip-flop, however, the JK allows for both reset and set to be asserted simultaneously; when both J and K are set to one, the flip-flop state simply toggles. An example of a timing diagram for a JK flip-flop is shown in Figure 1‑7.
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Figure 1‑6: Symbol and truth table for JK flip-flop
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Figure 1‑7: Timing diagram example for JK flip-flop

One can create a T or “toggle” flip-flop by simply tying the two inputs of the JK flip-flop together.  This results in a flip-flop that will either stay in the same state (memory) or toggle at each decision point.  The symbol and truth table for the T flip-flop are shown below in Figure 1‑8.  An example of a timing diagram for a T flip-flop is shown in Figure 1‑9.
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Figure 1‑8: Symbol and truth table for T flip-flop
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Figure 1‑9: Timing diagram example for T flip-flop

1.2.4   Asynchronous Inputs

Up until now, all the inputs we have examined have been “synchronous” inputs, meaning that the flip-flop only responds to them when they coincide with the clock.  There are occasions, however, where you’d like the flip-flop to respond regardless of the clock state.  Such inputs are called “asynchronous.”  An asynchronous input that makes the flip-flop go to ‘1’ is called a “preset” and an asynchronous input that makes the flip-flop go to ‘0’ is called a “clear.”  For example, the symbol and truth table for the RS flip-flop when you add its asynchronous inputs is shown below in Figure 1‑10.  Note that the asynchronous inputs trump other inputs to the system. An example of a timing diagram with asynchronous inputs is shown in Figure 1‑11.
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Figure 1‑10: Symbol and truth table for RS flip-flop with positive logic asynchronous inputs
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Figure 1‑11: Timing diagram example for RS flip-flop with positive logic asynchronous inputs

Asynchronous inputs can be added to any of the other flip-flops.  An additional wrinkle is that asynchronous inputs often follow negative logic—where the active state is ‘0’ instead of ‘1’.  An example of a JK flip-flop with asynchronous inputs using negative logic is shown below in Figure 1‑12. Negative logic inputs are indicated on the symbol by bubbles, and the labels are usually Clrn and Prn for clear and preset, respectively.   A timing diagram for this example is shown in Figure 1‑13.
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Figure 1‑12: Symbol and truth table for a JK flip-flop with asynchronous inputs using negative logic
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Figure 1‑13: Timing diagram example for JK flip-flop using asynchronous inputs with negative logic

Negative logic, and the labeling system for negative logic inputs, are often confusing for students.  Pay special attention to the fact that in Figure 1‑13, the asynchronous inputs for “clear” (Clrn, meaning “clear-negative”) and “preset” (Prn) don’t’ affect the output Q while set to 1; they only affect the input when they go to 0.  Device designers generally make several efforts to call attention to negative logic conditions.  For instance, a single input such as Prn can be marked with a bubble and labeled “
[image: image15.wmf]  

Prn

”, where the bubble, the “-n” suffix, and the overbar all serve as a reminder that the input uses negative logic.  (These markers are not cumulative!  All serve as a reminder; they do not cancel each other out.

1.2.5   Timing Diagrams for Interdependent Flip-Flops

Before moving on to counters we need a little more practice with timing diagrams, because they get a lot harder when you have multiple flip-flops whose inputs are tied to one another.  The key to analyzing these circuits is to understand that the flip-flop decision is based on the input value right before the clock edge.  Let’s start with a relatively simple example.  Consider the logic circuit below in  REF _Ref184107578 \h 
 for which you wish to determine the timing diagram assuming that the flip-flops are initially reset.  
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Figure 1‑14: Example of circuit with interconnected flip-flops

The first step in analyzing a circuit like this is to determine the inputs to the flip-flops.  So for this example you would note that you have T flip-flops, so that the truth table in Figure 1‑8 applies, and you would write down:
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You would then work forward in time, analyzing both flip-flops at each decision point:

· Right before the first decision point, Q0 and Q1 are both 0. (because the problem statement says “the flip-flops are initially reset”).  
As CLK changes:

· T0 = Q1 = 0, so the 0th flip-flop will stay the same
new Q0 = 0

· T1 = NOT (Q0) = 1, so the 1st flip-flop will toggle. 
new Q1 = 1

· Right before the next decision point, Q0 is still 0 but Q1 is 1.

· T0 = Q1 = 1, so the 0th flip-flop will toggle. 

new Q0 = 1

· T1 = NOT (Q0) = 1, so the 1st flip-flop will toggle again.
new Q1 = 0

· Right before the third decision point, Q0 is 1 and Q1 is 0.

· T0 = Q1 = 0, so the 0th flip-flop will stay the same.
new Q0 = 1

· T1 = NOT (Q0) = 0, so 1st flip-flop will stay the same.
new Q1 = 0

· Etc.

This result is illustrated in the timing diagram below in Figure 1‑15.  Analyzing circuits like this takes a little practice.  For another example, see the discussion of the mod-8 synchronous counter on page 11.  There are also more opportunities in the problems at the end of the chapter.  Such circuits are the basis for counters and state machines. 
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Figure 1‑15: Timing diagram for interconnected flip-flop example

1.3   Counters

1.3.1   Basic Concepts of Digital Counters

A counter is a sequential digital circuit whose output progresses in a predictable repeating pattern with each beat of the clock.  For example, a counter might count 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0…etc..  In binary, a 0-7 counter is counting 000, 001, 010, 011, 100, 101, 110, 111, 000…etc.  The count state is represented in binary by a set of flip-flops, with one flip-flop for each binary digit, so our example requires three flip-flops.  The states of a counter can be represented by a “state diagram” such as the one shown below in Figure 1‑16.  The “modulus” of a counter is the number of states it contains.  Our example has a modulus of 8, and would therefore be said to be a “mod-8” counter.  Note that a mod-x counter that starts at zero counts from 0 to x-1 (i.e. a mod-8 counter would count 0 to 7, a .mod-6 would count 0 to 5, etc.) The maximum modulus for a counter consisting of n flip-flops is 2n. Counters can either count up (0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3…) in which case they are called an “up-counter” or count down (7, 6, 5, 4, 3, 2, 1, 0, 7, 6, 5…) in which case they are called a “down-counter.”  The rest of this section will describe ways in which counters can be implemented. 
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Figure 1‑16: State diagram for mod-8 up-counter which is counting 0,1,2,3,4,5,6,7,0,1,2,…

1.3.2   Ripple Counters

Consider Figure 1‑16 again.  A simple implementation of the mod-8 up-counter described by the state diagram in Figure 1‑16 is shown below in Figure 1‑17.  The count state is given by Q2Q1Q0.  Note how the system clock only attaches to the Q0 flip-flop, and Q0 is the least significant bit. Successive flip-flops are clocked by the output from the previous stage.  Note also that the inputs are tied to “1” so that the flip-flops are always in toggle mode (they could be replaced by T flip-flops).   
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Figure 1‑17: Mod-8 ripple counter implemented with JK flip-flops

The best way to show how this circuit works is to examine the timing diagram for the circuit, which is shown below in Figure 1‑18.   Only Q0 is clocked by the system clock, so only Q0 toggles with each trailing edge of the system clock.  This results in the Q0 signal alternating with twice the period as the system clock.  The Q1 flip-flop is tied to Q0, so it toggles when Q0 is at a trailing edge, and the resulting signal has twice the period as Q0.  Similarly, the Q2 flip-flop is tied to Q1, so it toggles when Q1 is at a trailing edge with a result that the period doubles again.  If you track Q2Q1Q0, you’ll see that this results in counting.  

The delay associated with the flip-flop response has been exaggerated in this figure to accent the ripple effect.  The delay is also one downfall of ripple counters.  As you scale up a ripple counter to multiple bits, you incur more and more delay in the most significant bit.  Eventually this will cause errors in the system.   The solution to this increasing delay is to create a “synchronous counter” which is described in a later section.
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Figure 1‑18: Timing diagram for mod-8 ripple counter

But first, you might be wondering if you can create a ripple counter that isn’t mod-8, mod-16, or some other modulus that’s a power of 2.   The answer is that you can by taking advantage of the asynchronous inputs on the flip-flop.  For example, let’s say that you wish to modify the counter above so that it just counts 0-5.  The way you would do this would be to send an asynchronous clear signal to the flip-flops when the output tries to go to 6 (‘110’).  This is done in Figure 1‑19 below.  Note that the ‘clear’ inputs have negative logic, so that means you want the input to these terminals to be ‘1’ most of the time but ‘0’ when the count state goes to 6.  This is accomplished with the addition of the NAND gate, which will be 1 all the time except when Q1 and Q2 are both 1, so when the counter tries to go to 1102 the clears will be triggered.
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Figure 1‑19: Mod-6 ripple counter (counts 0-5)

Figure 1‑20 illustrates the timing diagram for this circuit.   Notice how the counter goes very briefly to 110, but is quickly cleared back to 000.  The duration of the “blips” has been exaggerated for illustration.   Thus, you can implement any modulus that is less than the maximum modulus (set by the number of flip-flops) with the prudent use of asynchronous clears.
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Figure 1‑20: Timing diagram for mod-6 counter shown above

To review, let’s say that you are assigned the task of designing a mod-X counter and wish to use a ripple counter.  First, you would determine the number of flip-flops you need.  Since the maximum modulus that can be implemented with n flip-flops is 2n, this means that you should determine the lowest power of 2 that is greater than or equal to your desired modulus and use the exponent.  For example, let’s say you wish to count 0 to 99, or mod-100.  The lowest power of 2 that exceeds 100 is 128 or 27, so you will need 7 flip-flops.  For a ripple counter these flip-flops will all be T or JK flip-flops with the input terminals set to ‘1’ for toggle, and the clock for each flip-flop should be tied to the output of the previous stage, with the first stage tied to the system clock.  The first stage will always be your least significant bit, and the last your most significant bit. 

Next, you need to figure out the logic for the clear so that the count stops where you want it.  For example, for a 0-99 counter, you want the flip-flops to all clear when the input reaches 10010, or 11001002.   Assuming that your clears use negative logic, that means that you need an expression which is 1 most of the time, but 0 when you hit 1100100.  This can be accomplished by a NAND gate with inputs that match the binary encoding of the clear point.  For this example, you could use the following expression for CLRN:
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In fact, you can simplify this expression a bit more, because since you plan to clear at 1100100, then you will never reach 1100101, 1100110, or 1100111, so you don’t care about the inputs that correspond to the digits to the right of the least significant ‘1’ in your clear point.
  Thus this expression can be further simplified to:  
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Armed with this information, you could then build the circuit to implement your counter.  

1.3.3   Synchronous Counters

Let’s face it, the ripple counter with the asynchronous clear just lacks style.  Ripple counters also have the problem of the accumulated delay, which means they don’t scale well to large numbers of flip-flops.  A more elegant solution can be obtained by a synchronous counter.  An example of a mod-8 synchronous counter is shown below in Figure 1‑21.
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Figure 1‑21: Mod-8 synchronous up-counter example

This circuit is called “synchronous” because all of the flip-flops share the same clock. To convince you that this is a counter, let’s go through the analysis of the timing diagram using the same process as was introduced on page 6.  First, you should note the expressions for the flip-flop inputs:
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Next, you would review the truth table for the T flip-flop, shown in Figure 1‑8, which tells us that if T is 1 the output will toggle, and if T is 0 the output will stay the same.  Then you would work forward in time, analyzing all three flip-flops at each decision point

· At the first decision point, assuming the flip-flops are initially reset, Q0, Q1, and Q2 are all 0. 

· T0 = 1, so the 0th flip-flop will toggle

· T1 = Q0 = 0, so the 1st flip-flop will stay the same.

· T2 = Q0Q1 = 0, so the 2nd flip-flop will stay the same.

· Right before the next decision point, Q0 is 1, while Q1 and Q2 are still 0.

· T0 = 1, so the 0th flip-flop will toggle

· T1 = Q0 = 1, so the 1st flip-flop will toggle.

· T2 = Q0Q1 = 0, so the 2nd flip-flop will stay the same.

· Right before the next decision point, Q0 is 0, Q1 is 1, and Q2 is still 0.

· T0 = 1, so the 0th flip-flop will toggle

· T1 = Q0 = 0, so the 1st flip-flop will stay the same.

· T2 = Q0Q1 = 0, so the 2nd flip-flop will stay the same.

· Right before the next decision point, Q0 is 1, Q1 is 1, and Q2 is still 0.

· T0 = 1, so the 0th flip-flop will toggle

· T1 = Q0 = 1, so the 1st flip-flop will toggle.

· T2 = Q0Q1 = 1, so the 2nd flip-flop will finally toggle.

· Etc.

The result is shown below in Figure 1‑22.
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Figure 1‑22: Timing diagram for mod-8 synchronous up-counter

Note that this counter no long exhibits the accumulated delay in the higher order digits, since all the flip-flops share the system clock.  As with the ripple counter, this counter could be modified to a lower modulus with the use of the asynchronous clear inputs.  However, there is a general method that can be used for a more elegant design.  For that matter, the method described in the next section can be used to create any state machine.

1.4   Counter Design

The focus of this section is the process by which one can design any state machine.  We will focus on the design of synchronous counters.  In brief, the design process for a state machine is as follows:

· Define the problem.

· Draw a state diagram for your system.

· Make a “state table,” which lists all possible Present States (in binary order), the Next States to which those states should transition, and the flip-flop inputs necessary to make those transitions happen.

· Use flip-flop “excitation tables” to determine the inputs required to make the desired transitions.

· Determine combinatorial logic expressions for all of the flip-flop inputs using the present state variables as inputs.

· Implement the circuit.

The process is best illustrated through an example.   Let’s say that we wish to design a mod-6 synchronous counter -- that is, a counter that will count from 0 to 5.  The state diagram for this counter is shown in Figure 1‑23. 
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Figure 1‑23: State diagram for mod-6 counter design example

Furthermore, let’s say that you wish to build this state machine using T flip-flops (you could use any type).  The next step is to construct the state table.

1.4.1   State Tables

As described above, a state table lists all of the possible present states, the next states that you wish to transition to, and the flip-flop inputs necessary to make that happen.  This counter requires three flip-flops, and so you would begin by making a table like the one shown in Figure 1‑24.  Note that all the possible present states are listed, even though this particular counter should never be in state 110 or 111.   The table of Figure 1‑24 is only partially complete, and at this point, this table would be the same for any state machine that used 3 T flip-flops.

	Present State
	Next State
	Flip-Flop Inputs

	Q2
	Q1
	Q0
	Q’2
	Q’1
	Q’0
	T2
	T1
	T0

	0
	0
	0
	
	
	
	
	
	

	0
	0
	1
	
	
	
	
	
	

	0
	1
	0
	
	
	
	
	
	

	0
	1
	1
	
	
	
	
	
	

	1
	0
	0
	
	
	
	
	
	

	1
	0
	1
	
	
	
	
	
	

	1
	1
	0
	
	
	
	
	
	

	1
	1
	1
	
	
	
	
	
	


Figure 1‑24: Generic state table for any state machine using 3 T flip-flops

The next step is to use your state diagram to fill out the “Next State” columns, as is shown in Figure 1‑24. For example, from the state 000, you wish to progress to state 001, so you would fill out 001 in the first row of the Next State column.    This continues down the table.  Note how state 101 goes to 000.  Finally, since you don’t expect to ever use 110 and 111, these states lead to don’t care conditions.   (This is a little misleading, because in truth you do care a little about these states.  You need to make sure that if your system inadvertently lands in an unused state—like at start-up—that it will resolve to a used state and not hang up in an endless loop.   We will revisit this issue later.)   For now, let’s just treat those states as “don’t cares”.

	Present State
	Next State
	Flip-Flop Inputs

	Q2
	Q1
	Q0
	Q’2
	Q’1
	Q’0
	T2
	T1
	T0

	0
	0
	0
	0
	0
	1
	
	
	

	0
	0
	1
	0
	1
	0
	
	
	

	0
	1
	0
	0
	1
	1
	
	
	

	0
	1
	1
	1
	0
	0
	
	
	

	1
	0
	0
	1
	0
	1
	
	
	

	1
	0
	1
	0
	0
	0
	
	
	

	1
	1
	0
	X
	X
	X
	
	
	

	1
	1
	1
	X
	X
	X
	
	
	


Figure 1‑25: State table for mod-6 counter example with Next State columns completed

To complete the state table, we now need to figure out what inputs are necessary to make the flip-flops behave as you wish.  To do this, we need to reverse engineer the flip-flops.  That leads us to excitation tables.

1.4.2   Flip-Flop Excitation Tables

An excitation table shows what inputs are necessary to make a desired transition at the next clock edge for a given flip-flop.   For example, with a T flip-flop if you are in the 0 state, and you want to go to the 1 state, then you need to toggle, requiring an input of 1.  On the other hand, if you’re in the 0 state and you want to stay in the 0 state, you want memory, which means an input of 0.  

The excitation tables for the D, T, and JK flip-flops are shown below in Figure 1‑26.   The JK flip-flop excitation table may appear confusing at first because of the “don’t care” conditions in the table.  The transition from 0 to 0, for example, can be accomplished either by memory (J=0, K=0) or by reset (J=0, K=1),  so the value of K doesn’t matter as long as J is 0.  Similarly, the transition from 0 to 1 can be accomplished either by a toggle or a set, and so forth.
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Figure 1‑26: Excitation tables for D, T, and JK flip-flops

Armed with the excitation tables, we can now complete the state table for our example, by filling in the T inputs that would give us the desired state transitions.  For example, for the first row, Q2 must transition from 0 to 0, requiring “memory” or a T2 value of 0.  But for the same row, Q0 must change from 0 to 1, requiring “toggle” or a T0 value of 1.  

	Present State
	Next State
	Flip-Flop Inputs

	Q2
	Q1
	Q0
	Q’2
	Q’1
	Q’0
	T2
	T1
	T0

	0
	0
	0
	0
	0
	1
	0
	0
	1

	0
	0
	1
	0
	1
	0
	0
	1
	1

	0
	1
	0
	0
	1
	1
	0
	0
	1

	0
	1
	1
	1
	0
	0
	1
	1
	1

	1
	0
	0
	1
	0
	1
	0
	0
	1

	1
	0
	1
	0
	0
	0
	1
	0
	1

	1
	1
	0
	X
	X
	X
	X
	X
	X

	1
	1
	1
	X
	X
	X
	X
	X
	X


Figure 1‑27: Completed state table for mod-6 counter example

1.4.3   State Table Implementation

Once the state table is complete, you have the information you need to determine the necessary combinatorial logic for combining the flip-flops.    This requires determining a logic expression for each of the flip-flop inputs as functions of the present state.  This means that you need 3 K-maps, one each for T2, T1 and T0, all as functions of the present state variables, Q2, Q1, and Q0.   Note that you don’t use the “Next State” columns of the state table at all in this process.  The K-maps and the resulting minimum sum-of-products expressions are shown in Figure 1‑28 below.
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Figure 1‑28: K-maps for mod-6 counter example

Finally, we’re ready to draw our circuit.  This is done in Figure 1‑29 below.  Note how the 3 flip-flops all share the same clock, and how the wiring for the flip-flops corresponds to the combinatorial logic expressions determined in Figure 1‑28.
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Figure 1‑29: Implementation of mod-6 counter using T flip-flops

Finally, let’s return to the subject of the unused states.  To have a robust design, we need to make sure that if our machine can recover if it should inadvertently fall into an unused state.   To do this, we need to look back at our state table, and determine what flip-flop inputs result from our combinatorial logic expressions for the unused inputs.  For our example, these inputs are shown in italics in Figure 1‑30 below.

	Present State
	Next State
	Flip-Flop Inputs

	Q2
	Q1
	Q0
	Q’2
	Q’1
	Q’0
	T2
	T1
	T0

	0
	0
	0
	0
	0
	1
	0
	0
	1

	0
	0
	1
	0
	1
	0
	0
	1
	1

	0
	1
	0
	0
	1
	1
	0
	0
	1

	0
	1
	1
	1
	0
	0
	1
	1
	1

	1
	0
	0
	1
	0
	1
	0
	0
	1

	1
	0
	1
	0
	0
	0
	1
	0
	1

	1
	1
	0
	?
	?
	?
	0
	0
	1

	1
	1
	1
	?
	?
	?
	1
	0
	1


Figure 1‑30: State table with flip-flop inputs determined for unused states

Then from these inputs, you can determine to what “Next State” the unused states would transition.  For example, state 110 would set T2 and T1 to 0 and T0 to 1. This would result in toggling only the Q0 bit so that the state transitions to 111. 

	Present State
	Next State
	Flip-Flop Inputs

	Q2
	Q1
	Q0
	Q’2
	Q’1
	Q’0
	T2
	T1
	T0

	0
	0
	0
	0
	0
	1
	0
	0
	1

	0
	0
	1
	0
	1
	0
	0
	1
	1

	0
	1
	0
	0
	1
	1
	0
	0
	1

	0
	1
	1
	1
	0
	0
	1
	1
	1

	1
	0
	0
	1
	0
	1
	0
	0
	1

	1
	0
	1
	0
	0
	0
	1
	0
	1

	1
	1
	0
	1
	1
	1
	0
	0
	1

	1
	1
	1
	0
	1
	0
	1
	0
	1


Figure 1‑31: Complete state table for mod-6 counter example, including unused states

From Figure 1‑31, one can then determine a state diagram for the system that includes even the unused states, and this is shown in Figure 1‑32.  This diagram indicates that our system is robust, because if the machine should land in the 110 or 111 state, it will quickly return to the main counting loop.   Therefore, no further design modifications are necessary.  If we’d found, for example, that 111 transitioned back to 110, then we’d have an endless loop, so we would need to adjust our design.
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Figure 1‑32: State diagram for mod-6 counter example, where unused states are shown

1.4.4   Additional State Machine Design Examples

1.4.4.1   Mod-6 Counter Using JK Flip-Flops

The same state machine can be made out of any type of flip-flop.  As an example, let’s repeat the mod-6 counter design, but instead use JK Flip-Flops.  Our state table, shown in Figure 1‑33 below, would have the same “Present State” and “Next State” columns, but would now have 6 columns for flip-flop inputs.  This makes a little more work, but at least with JK flip-flops you get a lot of don’t care conditions that simplify the K-maps, which are shown in Figure 1‑34.

	Present State
	Next State
	Flip-Flop Inputs

	Q2
	Q1
	Q0
	Q’2
	Q’1
	Q’0
	J2
	K2
	J1
	K1
	J0
	K0

	0
	0
	0
	0
	0
	1
	0
	X
	0
	X
	1
	X

	0
	0
	1
	0
	1
	0
	0
	X
	1
	X
	X
	1

	0
	1
	0
	0
	1
	1
	0
	X
	X
	0
	1
	X

	0
	1
	1
	1
	0
	0
	1
	X
	X
	1
	X
	1

	1
	0
	0
	1
	0
	1
	X
	0
	0
	X
	1
	X

	1
	0
	1
	0
	0
	0
	X
	1
	0
	X
	X
	1

	1
	1
	0
	X
	X
	X
	X
	X
	X
	X
	X
	X

	1
	1
	1
	X
	X
	X
	X
	X
	X
	X
	X
	X


Figure 1‑33:  State table for mod-6 counter implemented with JK flip-flops
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Figure 1‑34: K-maps for mod-6 counter implemented with JK flip-flops

We leave it to the reader to complete the circuit design from this point.  For more practice, let’s look at another state machine.

1.4.4.2   2-Bit Gray Scale Counter

In a gray scale counter, only one digit changes with each transition.  So, for example, a 2-bit gray scale counter could count 00, 01, 11, 10, 00, 01,…  The state diagram for this is shown below in Figure 1‑35.  
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Figure 1‑35: State diagram for 2-bit gray-scale counter

We will implement this counter with D flip-flops.  The state table for this counter is shown below in Figure 1‑36.  Note how the states are listed in binary counting order.  The K-maps and resulting circuit for this example are shown in Figure 1‑37 and Figure 1‑38.

	Present State
	Next State
	Flip-Flop Inputs

	Q1
	Q0
	Q’1
	Q’0
	D1
	D0

	0
	0
	0
	1
	0
	1

	0
	1
	1
	1
	1
	1

	1
	0
	0
	0
	0
	0

	1
	1
	1
	0
	1
	0


Figure 1‑36: State table for 2-bit gray-scale counter
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Figure 1‑37: K-maps for flip-flop inputs in 2-bit gray-scale counter example
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Figure 1‑38: Circuit for 2-bit gray-scale counter

1.5   Homework Problems

Problem 1‑1. Complete the timing diagram below for the D flip-flop shown. You may assume that the flip-flop is initially reset. 
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Problem 1‑2. Complete the timing diagram below for the RS flip-flop shown below (and in Figure 1‑10).
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Problem 1‑3. Complete the timing diagram below for the JK flip-flop shown in Figure 1‑12.
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Problem 1‑4. Create a timing diagram covering 6 clock cycles for the sequential logic circuit below.  Determine whether this circuit is an up-counter, down-counter, or some other state machine, and if a counter determine its modulus.  Assume that the flip-flops are initially reset.
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Problem 1‑5. Create a timing diagram covering 6 clock cycles for the sequential logic circuit below.  Determine whether this circuit is an up-counter, down-counter, or some other state machine, and if a counter determine its modulus.  Assume that the flip-flops are initially reset.
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Problem 1-6. Determine the state table and state diagram for the state machine shown above in Problem 1-5, including unused states (since you have the circuit there should be no ‘x’s in your table).

Problem 1‑7. Design a mod-16 ripple up-counter.

Problem 1‑8. Design a mod-10 ripple up-counter.

Problem 1-9. Draw the circuit that would complete the example of a mod-6 counter using JK flip-flops, with the state table given in Figure 1‑33.

Problem 1-10.  Draw the complete state diagram, including the 110 and 111 states, for the JK implementation of the mod-6 counter, with the state table given in Figure 1‑33. (This will require you to determine how your logic handled the don’t cares in the table).

Problem 1‑11. Design a mod-6 counter using D flip-flops.

Problem 1‑12. Design a 3-bit gray scale counter, which would count 000, 001, 011, 010, 110, 111, 101, 100.  Use JK flip-flops.

Problem 1-13. Design a synchronous mod-10 up-counter using T flip-flops.











































































































































































































































































































































� Actually, you do care a little about these inputs, because you want your system to be able to recover if it accidently ends up in one of these unused states.  So setting your logic so that the unused states lead to a clear makes your counter more robust in the face of error.



1

_1265459103.doc


T





C





Q





Q





Q

















n-1





Q





Q





n





-





1





Q





n





-





1





Q





n





-





1





Q





n





toggle





1





memory





0





memory





x





1





memory





x





0





Label








C





Q





n





-





1





Q





n





-





1





Q





n





-





1





Q





n





toggle





1





memory





0





memory





x





1





memory





x





0





Label





T





C









_1265603731.doc
















































































































































































































































































































































































R





S





C





Q





Q





Clr





Pre





R





S





C





Q





Q





Q





Clr





Pre









_1265603922.doc


























































































































D





C





Q





Q





D





C





Q





Q





Q

































_1265573944.unknown

_1257849678.unknown

_1257854229.unknown

_1258202541.unknown

_1257853741.unknown

_1255420195.unknown

