
 1

EE354 Spring 2011 Lab 3: Sampling Theorem Theory and Simulation

Formal Report Required – Groups of Two Students

In this lab you will explore the properties of the sampling theorem from a theoretical and simulation perspective. You will
use Matlab to create and view signals and the oscilloscope to display both the time-domain and frequency-domain signals.
This lab requires a formal lab report per the guidelines posted on the course website. Students should work individually,
however, only one lab report per group of two (2) students needs to be submitted.

Part 1: Theory

Part 1A: Sinusoidal Signal

Consider the following audio signal:

 () ()()1 0.5cos 2 11.025s t kHz tπ=

The signal is sampled using the following three sampling frequencies:

• fs = 44.1 kHz
• fs = 22.05 kHz
• fs = 8820 Hz

(a) For each sampling frequency, determine all frequencies that appear in the sampled spectrum that are less than 20

kHz and report them in a Table.
(b) For each sampling frequency, use the Matlab STEM command to generate a plot of the sampled spectrum for all

frequencies between -20 kHz and +20 kHz.

Part 1B: Chirp Signal

Consider the following audio signal:

 () ()()2 0.5cos 2 2500 200 0 10 secs t t t tπ= + ≤ ≤

Note that this is known as a “chirp” signal. In this case our signal will start at a frequency of 2.5 kHz and increase over
time up to a maximum frequency of 4.5 kHz. It will have a flat spectrum from 2.5 kHz up to 4.5 kHz.

The signal is sampled using the following three sampling frequencies:

• fs = 44.1 kHz
• fs = 22.05 kHz
• fs = 8820 Hz

(a) For each sampling frequency, determine all frequencies (or range of frequencies) that appear in the sampled

spectrum that are less than 20 kHz, and report them in a Table.
(b) For each sampling frequency, use the Matlab BAR command to generate a plot of the sampled spectrum for all

frequencies between -20 kHz and +20 kHz. It is not necessary to calculate the exact width of the bar plot, use an
estimated width to produce a plot that appears approximately correct.

Include the tables and the graphs of the predicted sampled spectra in the body of your report

Instructor Verification:_____________
Part 2: Simulation

Part 2A: Sinusoidal Signal

 2

For the single-tone audio signal s1(t), create a Matlab simulation to validate your predicted results for the three
different sampling frequencies. Don't forget that, in Matlab, the sample frequency is used to create the time vector for
your signal. Also, don't forget the effect of sampling...in the frequency domain, you will see replications of the original
analog signal's frequency spectrum.

Plot (on a single figure using the subplot command) the time-domain and frequency spectrum associated with each
sampling frequency. The time-domain signal should show several cycles of the sinusoid, and the spectrum should be
plotted as log magnitude (dB scale) and show all shifted copies of the spectrum between -20 kHz and 20 kHz. Include
a well-commented copy of your code as an appendix to the report.

For generating the spectrum, use the Matlab function pwelch.m. This function takes in time-domain samples and the
sampling frequency and returns an array of frequencies and their associated powers.

*** The Matlab code pwelch uses the FFT (Fast Fourier Transform) routine to generate the power spectrum of a given
signal. The FFT only displays the spectral content of a signal that falls below half the sampling frequency. In order to
see shifted copies of the original spectrum (as the sampling theorem predicts), the sampled signal has to be interpolated
to a higher effective sampling frequency. The Matlab upsample.m function does this for us, simply by stuffing
zeros in between “true” sample values.

Ultimately, we want to be able to compare all three signals at the same (or similar) effective sampling frequency. To
correctly generate and display all shifted copies of your spectrum, use code similar to the following snippet:

fs = #####; % Establish our Sampling Frequency
delt = 1/fs; % Time increment between samples
t = ####### % Setup the time vector
fs_soundcard = ####; % Sound card operates at fs = 44.1 kHz
fs_mult = floor(fs_soundcard./fs); % Interpolation multiplier
fs_up = fs.*fs_mult; % Effective Sampling Frequency

y = cos(2*pi*fc*t); % Original Signal, Sampled at Original Rate
y2 = upsample(y,fs_mult); % Interpolated Signal – Zero Insertion Technique

[power,freq] = pwelch(y2,[],[],[],fs_up,'onesided'); % Generate the PSD
plot(freq,10.*log10(power)) % Plot the results in dB!

Note: For all of your displays, the frequency spectrum will have power plotted in dB. In order to set the axes so that
you are looking at reasonable bounds on power, run the following commands to "zoom" in on a section of your plots
before you print them or save them. To set the minimum dB value displayed to -30dB, and the max to +1dB, and to
make the frequency axis display all computed frequency content:

min_dB=-40;
max_dB=1;
% sets the min and max dB value displayed in the plot
min_freq=freq(1);
max_freq=freq(end);
% sets the min and max frequency displayed in the plot...all freqs will be
% displayed, adjust as necessary to get a range of -20 to +20 kHz
axis([min_freq max_freq min_dB max_dB])
grid on

 3

Part 2B: Chirp Signal

The Matlab command to output a chirp signal is: chirp(t, fstart, tstop, fstop). In this case, we want
to sweep from 2.5 kHz to 4.5 kHz over a period of 10 seconds. The variable “t” is the time axis you set up in your
code (make sure it extends for the entire 10 seconds, or else you will get an error!). Thus, the command would look
like:

chirp(t, 2500, 10, 4500)

Helpful Hints

An outline of your code should look something like the following:

1. Establish your sampling frequency (fs).
2. Select a start and stop time, and generate a time-axis (t).
3. Generate your original signal as well as the interpolated copy of your signal (y and y2).
4. Calculate the spectrum of the signal and then plot it with the time-domain response.

When finished, your results should look similar to Figure 1 below.

Figure 1: Example Time-Domain and Frequency-Domain Response for s1(t) when sampled at 8 kHz.

Include each of the six plots (three each for the tone and chirp signal) in the body of your report Show a meaningful

amount of the time domain of each signal as well as the frequency spectrum from 0 – 20 kHz.

Instructor Verification:_____________

 4

Part 3: Hardware Measurements of the Sampled Signal

Part 3A: Single Tone

Next, use the oscilloscope to verify that all the predicted and simulated frequencies really exist in your sampled signal.
Start by connecting the output of your PC’s sound card to the Channel 1 input of your oscilloscope (you will require a
set of adapters provided by the instructor), as shown below in the following diagram

`

CH1 CH2 CH3 CH4

LeCroy Scope

Audio Out

1/8" Male to RCA Female
Audio Splitter Adapter

RCA Male to BNC Female
Adapter Standard BNC Cable

 Figure 2: Illustration of the connection between the PC Audio Output and the LeCroy Oscilloscope.

Configure the scope to record exactly 10,000 samples of the waveform. Set the sampling frequency to 50 kS/s, and
configure the scope to display the frequency spectrum of the input signal.

After configuring the Oscope, use Matlab to output the upsampled signal to your PC’s sound card. The Matlab
command to generate an audio output is sound(<varname>, fs, Nbits). In this case, your upsampled
wavefrom will be the <varname> output, fs will be your effective sampling frequency, and Nbits should be set to
16.

Observe the frequency spectrum on the scope and compare the results with theory/simulation. Use the cursors to place
a vertical cursor on the FFT and verify that all predicted frequencies are actually present in the output.

Save a copy of both the time-domain signal and the frequency spectrum as recorded by the scope. Load the waveforms
into Matlab, and generate a plot of the measured time-domain signal/measured frequency domain signal.

 5

Part 3B: Chirp Signal

Repeat Part 3A for the chirp audio signal s2(t). In order to see the spectrum on the oscilloscope, you will need to adjust
the Math operation. Under the Math pop-up box, select Dual Function. Make sure the following options are enabled:

• Operator 1: FFT
• Operator 2: Roof
• Summary: Roof(FFT(C1))

Play the wave file as before. Use the Clear Sweeps button on the front panel of the scope to clear the screen in
between observing waveforms. Save a copy of both the time-domain signal and the frequency spectrum as recorded by
the scope. Load the waveforms into Matlab, and generate a plot of the measured time-domain signal/measured
frequency domain signal.

Include each of the six plots (three each for the tone and chirp signal) for the measured time-domain/frequency-
domain signals in the body of your report. Show a meaningful amount of the time domain of each signal as well as
the frequency spectrum from 0 – 20 kHz.

Part 3C: Analysis of Results

In your report, analyze the results of your theoretical predictions and Matlab simulations. Pay particular attention to
addressing the following topics:

• Did you get the output you predicted from both Matlab and the Oscilloscope?
o If so, how well does the theory match the simulated results?
o If not, describe what went wrong.

• What happens to the frequency spectrum when sampling at greater than the Nyquist rate?
• What happens to the frequency spectrum when sampling at less than the Nyquist rate?
• Describe a practical benefit (and there are many) that arises from generating shifted copies of a signals

spectrum via sampling.

	Part 2: Simulation

