

1 Example Laboratory Report for a Project Requiring a
Microprocessor

CDR Charles B. Cameron

12 February 2002

1.1 Purpose
The purpose of this report is to give students an example of a practical design problem for EE461
Microcomputer-Based Digital Design in which a microprocessor is included. The report shows
how to design a circuit containing the microprocessor and describes the program within it.

The objective of the circuit is threefold:

1. Generate a 1-Hz output.

2. Use interrupts to make the frequency accurate.

3. Demonstrate how to use semaphores so the interrupt service routine can communicate
with a foreground program with great reliability.

Because the program entails the use of real-time interrupts, it is difficult to present information
on how to use the microprocessor’s simulation program to verify correct operation. Nonetheless,
that difficult question is also discussed in this report.

1.2 Equipment
Agilent 54622D Mixed Signal Oscilloscope

Digi-Design Prototyping Board

1.3 Design

1.3.1 Circuit Schematic

Microchip
PIC16F874

MCLR

13

1

Vcc

4 MHz

RESET

14

11 32

12 31

2

Vcc

0RA
1 Hz

DDV

SSV SSV

DDV
1OSC

2OSC

Figure 1: Schematic of connections to the PIC16F874

Several features of the circuit schematic diagram in Figure 1 are worth mentioning.

The oscillator inputs 1OSC and 2OSC are connected in the HS mode, a mode which must be
specified when the microprocessor program is downloaded to the chip. The crystal selected has
a frequency of 4 MHz. Since the PIC16F874 divides this clock rate by four internally, the result
is that one instruction cycle takes one microsecond.

The PIC16F874 has two connections for both power and ground. The MCLR input is an active-
LOW signal and must be held high for normal operation. We have connected it to a switch to
permit a manual reset when desired.

Bit 0 of Port A (signal 0RA) is used to output a 1-Hz signal from the circuit.

1.3.2 Program
Appendix A contains a complete listing of the PIC16F874 program which produces the required
output signal.

The included file p16f874.inc includes definitions of symbols not recognized inherently by the
assembler.

When an interrupt occurs, it is essential that the current context be saved. This means that the
contents of the Status register be saved. Storage is reserved in the processor’s internal RAM
beginning at hexadecimal address 0x20 for this purpose.

Bits in the word InterprocessFlags permits the interrupt service routine (ISR) to communicate
with the foreground program. The ISR has sole permission to alter the TimerInt bit in this
word. The foreground program has sole permission to alter the TimerAck bit. When the ISR

wants to notify the foreground program that one half second has elapsed, it asserts the TimerInt
bit. The foreground program eventually notices this and asserts the TimerAck bit in
acknowledgement. The next time the ISR gets control, it notices the acknowledgement and
withdraws (de-asserts) the TimerInt bit. Soon the foreground program notices this and
withdraws (de-asserts) the TimerAck bit, completing the exchange of information.

The Light bit of Port A is used to generate a 1-Hz signal. This is bit 0 of the port. A mask with
a 1 in this position is also created to simplify accessing this bit later in the program.

Together, PulseCount1 and PulseCount0 comprise a 16-bit counter. The ISR will update this
counter 500 times and then notify the foreground program as described above. This means that
the ISR notifies the foreground program twice each second. All the foreground program needs to
do to generate the output signal is toggle it each time it receives such a notification and provide
an acknowledgement to the ISR.

When power is applied to the system or after a Reset signal has occurred, the program starts
execution at location 0. The instruction stored there clears the PCLATH register, causing all
subsequent instructions to be fetched from page 0 of the Flash program memory. (If the program
were large enough we might have to manipulate the contents of this register later but as it
happens this program is not very big at all.)

The interrupt service routine must begin at location 4 in the PIC16F874 architecture so the main
program skips over it. Its description is presented in section 1.3.8. At label main the main
program resumes.

1.3.3 Initialization of Port A
All the bits of Port A are initialized as output pins. However, the only bit RA0 is used. It carries
the 1-Hz signal outside the chip.

1.3.4 Initialization of Timer 2
Timer 2 is then initialized to create a 1-ms interval between successive interrupts. Subsequently
we can count off 500 of these and know that a halfsecond has elapsed. By choosing a prescalar
value of 4, the value 250 in register PR2, and a postscaler value of 1 we obtain
4 250 1 1000× × = 1 µs− instruction cycles between successive interrupts. Once configured,
interrupts are enabled and then the timer is started.

1.3.5 Other Initialization Steps
The InterprocessFlags are set to zero, signifying that the ISR has not yet notified the foreground
program that 500 ms have elapsed and the foreground program has not acknowledged such a
notification.

The 16-bit pulse counter is initialized. Its operation is discussed in section 1.3.6.

Finally, the Light bit of Port A is extinguished. It therefore is off to begin with.

1.3.6 Initializing the Pulse Counter
Initializing the Pulse Counter entails putting the value 499 into the 16-bit register. The value 499
is appropriate because one 1-ms interval will elapse for each value of the counter from 499 down
to 0, inclusive, making 500 intervals or 500 ms in all.

1.3.7 Main Program
The main or foreground program continually checks to see if the ISR has announced completion
of a 500-ms interval. If so, the main program toggles the value of the Light bit of Port A.
Otherwise it simply keeps looking.

The rest of the main program is devoted to taking care of its end of the communication with the
ISR. When it discovers the TimerInt bit of the InterprocessFlags has been asserted, it asserts
the TimerAck bit of the same word. The next step in the protocol is to await withdrawal of the
TimerInt signal. When this happens it withdraws the TimerAck bit, completing the exchange
of information.

1.3.8 Interrupt Service Routine

1.3.8.1 Recognizing the Interrupt
Since the PIC16F874 only has one interrupt vector, the first task upon entry into the ISR is to
figure out which interrupt took place. Although this program has only a single enable interrupt
and we could therefore bypass this step, the program shows how to recognize a particular
interrupt and then invoke the subroutine Timer2 to handle it.

Before reaching this part of the code the ISR saves the values of the W register and of the
STATUS register. Subsequently it restores these values. The scheme used is available in
Microchip’s documentation. Its use of the SWAPF instruction is a little obscure. It is used
because it does not affect the condition codes in the STATUS register whereas the various move
instructions do affect them.

1.3.8.2 Handling the Timer Interrupt
Upon entry into the ISR there are two possibilities: either the ISR is waiting for
acknowledgement from the foreground program of an earlier notification of the completion of a
500-ms interval or it is not. In either case the ISR must properly count the timer interrupt which
caused it to get control in the first place. After doing this, however, it must handle the two
situations appropriately.

If it is not awaiting an acknowledgement then it is free to set the TimerInt bit of the
InterprocessFlags register if, in fact, 500-ms have elapsed.

Otherwise, it should refrain from issuing another notification until the acknowledgement has
been withdrawn.

We expect the protocol to be completed in well under 500 ms. In general, if this were not a valid
assumption, we could alter the ISR to count the number of notifications it wanted to generate but
was inhibited from generating. When the (slow) foreground program finally withdrew the
acknowledgement indication, the ISR could pass that count instead of just passing a single bit.
In our case, it is not necessary.

1.4 Experimental Observations
During the debugging of the program the PIC16F874 simulator was used to great advantage.
The principle difficulty in using it was that the program takes much longer to execute than it
does in the target hardware. In order to reduce this time, we single-stepped through the program

and changed the values of Timer 2 with the debugger in order to hasten the execution. For
example, when Timer 2 needed to count from 0 to 255 before an interrupt would be generated,
we simply altered the value manually, causing the ISR to be entered earlier than normal. When
the ISR was deciding whether all 500 1-ms intervals had elapsed, we often just changed the
value of the 16-bit counter PulseCounter to achieve this goal early. This allowed us to check
the logic associated with communications between the ISR and the foreground program in a
reasonable amount of time.

Once this debugging had been satisfactorily completed, we downloaded the program into a chip
and it produced a nearly correct result. However, the measured period of the signal was 1.005 s,
not 1.000 s. While this error was small, it still seemed excessive. We discovered that 501 ms,
not 500 ms, was occurring between successive notifications by the ISR to the foreground
program. Once this was corrected, we got the results shown in Figure 2.

Figure 2: Oscilloscope Display of the Output of the PIC16F874

Figure 2 shows an Agilent 54622D oscilloscope display of the final results of the design. Bit
RA0 is bit 0 of Port A and it corresponds to the Light bit of that port, as it is referred to in the
program.

The display reveals that the period of the signal is 1.001 s, very close to the desired 1.000 s.

1.5 Conclusions
The design was successful in creating a 1-Hz signal to within 1 part in 1000. Whether this error
is real or an artifact of the Agilent 54622D oscilloscope itself is not clear and might be worthy of
further investigation. Doing so could be as simple as decreasing the time scale. Possibly the
oscilloscope is not capable of better than 1 part in 1000 of accuracy but this, too, could be
checked if the discrepancy needed to be explained better.

The protocol for communication between an ISR and the foreground program is very robust and
while not strictly necessary in this easy project it would be very useful in a more complicated
situation. It is necessary in general because the foreground can never be sure just when the ISR

will execute and the ISR can never be sure just where in its cycle the foreground program was
suspended before the ISR gained control. By restricting write-access to the flags to either just
the ISR or just the foreground program, the possibility of one process altering data already set by
another process is eliminated.

The PIC16F874 does have a read-modify-write capability which also can be used to eliminate
the problem of multiple access to the same memory location. That capability was ignored in this
project.

A. Program Listing

MPASM 02.70 Released INTERRUP.ASM 2-12-2002 16:37:38 PAGE 1

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00001 ; Filename: intexamp.asm
 00002 ; Author: Charles B. Cameron, CDR, USN
 00003 ; Date: 5 February 2002
 00004 ; Description: A program demonstrating how to use the timer
 00005 ; interrupt so that a foreground program can achieve
 00006 ; accurate timing without burdening the interrupt
 00007 ; routine.
 00008 ;
 00009 ;**
 00010 ; *
 00011 ; Files required: *
 00012 ; *
 00013 ; p16f874.inc *
 00014 ; *
 00015 ;**
 00016 ; *
 00017 ; Notes: *
 00018 ; This program generates an interrupt every 1 ms. *
 00019 ; It's assumed the processor is driven with a 4.000 MHz crystal *
 00020 ; oscillator and is to operate in HS mode. *
 00021 ; *
 00022 ; The interrupt service routine (ISR) counts 500 interrupts (1 s) *
 00023 ; and then sets a semaphore. The foreground routine monitors the *
 00024 ; semaphore and, when it sees it, toggles bit 0 of Port A. It *
 00025 ; then resets a different semaphore to inform the ISR that it got *
 00026 ; the message. At this point, the ISR resets its semaphore. Then *
 00027 ; the foreground program can reset its semaphore and the cycle *
 00028 ; continues indefinitely. *
 00029 ; *
 00030 ;**
 00031
 00032
 00033 list p=16f874 ; list directive to define processor
 00034 #include <p16f874.inc> ; processor specific variable definitions
 00001 LIST
 00002 ; P16F874.INC Standard Header File, Version 1.00 Microchip Technology, Inc.
 00374 LIST
 00035
2007 3F32 00036 __CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON & _HS_OSC & _WRT_ENABLE_ON & _LVP_OFF & _CP
 D_OFF
 00037
 00038 ; Turns code protection off, watch dog timer off,
 00039 ; brown-out reset disabled, power-up timer enabled, HS oscillator mode selected,
 00040 ; flash program memory write disabled, low-voltage in-circuit serial programming
 00041 ; disabled, and data EE memory code protrection off.
 00042
 00043 ;***** VARIABLE DEFINITIONS ***
 00000020 00044 w_temp EQU 0x20 ; variable used for context saving
 00000021 00045 status_temp EQU 0x21 ; variable used for context saving
 00046
 00000022 00047 InterprocessFlags equ 0x22 ; flags for interprocess communication
 00000000 00048 TimerInt equ 0 ; Bit 0 = 1 when the ISR has counted enough interrupts.
 00049 ; = 0 otherwise.

MPASM 02.70 Released INTERRUP.ASM 2-12-2002 16:37:38 PAGE 2

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00000001 00050 TimerAck equ 1 ; Bit 1 = 1 when the foreground process acknowledges
 00051 ; the notification.
 00052 ; = 0 otherwise.
 00000000 00053 Light equ 0 ; Points to bit 0 of Port A. Can be used to
 00054 ; operate a light
 00000001 00055 LightMask equ B'00000001' ; A mask with a 1 in the Light bit's position.
 00056
 00000023 00057 PulseCount0 equ 0x23 ; LSB of count of the number of interrupts which have occurred.
 00000024 00058 PulseCount1 equ 0x24 ; MSB of count of the number of interrupts which have occurred.
 000000F3 00059 PulseCount0Init equ D'500'-(D'256'+D'1') ; 500 x 1 ms = 500 ms = 1/2 of a 1-Hz cycle.
 00000001 00060 PulseCount1Init equ 1 ; = 1 x 256^1 + (500-(256+1) x 256^0 = 500-1 = 499
 00061
 00062
 00063 ;**
0000 00064 ORG 0x000 ; processor reset vector
0000 018A 00065 clrf PCLATH ; ensure page bits are cleared
0001 281D 00066 goto main ; go to beginning of program
 00067
 00068 ;**
 00069 ; The following instructions are a standard prolog for handling all interrupts.
 00070 ;**
0004 00071 ORG 0x004 ; interrupt vector location
0004 00A0 00072 movwf w_temp ; save off current W register contents
0005 0E03 00073 swapf STATUS,W ; move status register into W register
0006 0183 00074 clrf STATUS ; select Bank 0
0007 00A1 00075 movwf status_temp ; save off contents of STATUS register
 00076
 00077 ;**
 00078 ; Handle the individual interrupts
 00079 ;**
0008 188C 00080 btfsc PIR1,TMR2IF ; If this is a Timer 2 interrupt
0009 200F 00081 call Timer2 ; then service it.
 00082
 00083 ;**
 00084 ; The following instructions are a standard epilog for handling all interrupts.
 00085 ;**
000A 0E21 00086 swapf status_temp,w ; retrieve copy of STATUS register
000B 0083 00087 movwf STATUS ; restore pre-isr STATUS register contents
000C 0EA0 00088 swapf w_temp,f
000D 0E20 00089 swapf w_temp,w ; restore pre-isr W register contents
000E 0009 00090 retfie ; return from interrupt
 00091
 00092 ;**
 00093 ; Timer 2 Interrupt handler.
 00094 ;**
000F 00095 Timer2
 00096 ; Are we waiting for the foreground process to acknowledge our signal?
000F 1822 00097 btfsc InterprocessFlags,TimerInt
0010 2819 00098 goto Timer2CheckAck
0011 00099 Timer2DecrementCount
 00100 ; No, so decrement the count. If we reach the end, let the foreground routine know.
0011 204A 00101 call CountTimer2Int
0012 1D03 00102 btfss STATUS,Z

MPASM 02.70 Released INTERRUP.ASM 2-12-2002 16:37:38 PAGE 3

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

0013 2817 00103 goto Timer2EndISR ; We haven't reached zero so return.
 00104 ; We have reached the end.
 00105 ; Is the acknowledgement flag outstanding?
0014 18A2 00106 btfsc InterprocessFlags,TimerAck
0015 2817 00107 goto Timer2EndISR ; Yes. Wait for it to be withdrawn.
 00108 ; No, so let the foreground process know the desired
 00109 ; number of interrupts has been counted.
0016 1422 00110 bsf InterprocessFlags,TimerInt
 00111 ; The ISR must reset the interrupt flag before returning.
0017 00112 Timer2EndISR
0017 108C 00113 BCF PIR1,TMR2IF ; Clear Timer 2 interrupt flag and continue.
0018 0008 00114 return
0019 00115 Timer2CheckAck
 00116 ; Has the foreground process acknowledged our signal?
0019 1CA2 00117 btfss InterprocessFlags,TimerAck
001A 2811 00118 goto Timer2DecrementCount ; No. Update count and continue.
 00119
001B 00120 Timer2AckReceived ; Yes. Remove the notification semaphore.
001B 1022 00121 bcf InterprocessFlags,TimerInt
001C 2811 00122 goto Timer2DecrementCount
001D 00123 main
 00124
 00125 ; remaining code goes here
 00126
 00127 ; Configure Port A. Let all bits be outputs. We'll use Bit 0 to output a test signal.
001D 1283 00128 bcf STATUS,RP0 ; Select Bank 0
001E 1303 00129 bcf STATUS,RP1
001F 0185 00130 clrf PORTA ; Initialize Port A by clearing the output latches.
0020 1683 00131 bsf STATUS,RP0 ; Select Bank 1
0021 3006 00132 movlw B'00000110' ; Let all pins be for digital use, not analog use.
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
0022 009F 00133 movwf ADCON1
0023 3000 00134 movlw B'00000000' ; Let all Port A pins be used for output.
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
0024 0085 00135 movwf TRISA
0025 1283 00136 bcf STATUS,RP0 ; Revert to Bank 0
 00137
 00138 ; Set up Timer 2 to generate interrupts every 1 ms. Since we're assuming an instruction
 00139 ; cycle consumes 1 us, we need to cause an interrupt every 1000 instruction cycles.
 00140 ; We'll set the prescaler to 4, the PR2 register to 250, and the postscaler to 1. This
 00141 ; will generate interrupts every 4 x 250 x 1 = 1000 instruction cycles.
 00142
 00143 ; ***
 00144 ; START OF CODE to initialize Timer 2
 00145 ; ***
0026 018B 00146 CLRF INTCON ; Disable interrupts
0027 0191 00147 CLRF TMR2 ; Clear Timer2 register
0028 1683 00148 BSF STATUS, RP0 ; Bank1
0029 170B 00149 bsf INTCON,PEIE ; Enable peripheral interrupts
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
002A 018C 00150 CLRF PIE1 ; Mask all peripheral interrupts except
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
002B 148C 00151 bsf PIE1,TMR2IE ; the timer 2 interrupts.

MPASM 02.70 Released INTERRUP.ASM 2-12-2002 16:37:38 PAGE 4

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

002C 1283 00152 BCF STATUS, RP0 ; Bank0
002D 018C 00153 CLRF PIR1 ; Clear peripheral interrupts Flags
002E 3001 00154 movlw B'00000001' ; Set Postscale = 1, Prescale = 4, Timer 2 = off.
002F 0092 00155 movwf T2CON
0030 1683 00156 BSF STATUS, RP0 ; Bank1
0031 30F9 00157 movlw D'250'-1 ; Set the PR2 register for Timer 2 to divide by 250.
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
0032 0092 00158 movwf PR2
0033 1283 00159 BCF STATUS, RP0 ; Bank0
0034 178B 00160 bsf INTCON,GIE ; Global interrupt enable.
0035 1512 00161 BSF T2CON,TMR2ON ; Timer2 starts to increment
 00162
 00163 ; ***
 00164 ; END OF CODE to initialize Timer 2
 00165 ; ***
 00166 ; Initialize interprocess communications flags
0036 01A2 00167 clrf InterprocessFlags ; Flags are 0 when not in use.
 00168 ; Initialize the interrupt counter so that it will count up.
0037 2045 00169 call InitPulseCount
 00170 ; Turn off Light bit of Port A
0038 1005 00171 bcf PORTA,Light
 00172
 00173 ; ***
 00174 ;
 00175
0039 00176 loop
 00177 ; The function of this program is to toggle an output bit PORTA(Light)
 00178 ; every 1/2 second. The toggling is trivial. Most of the work here has
 00179 ; to do with a proper handshake between the interrupt service routine and
 00180 ; this foreground program. The ISR will notify us when 1/2-second's worth
 00181 ; of interrupts have been counted. When this happens, it will set a
 00182 ; notification flag. Once we've noticed it, we'll set an acknowledgement flag.
 00183 ; When the ISR has noticed this, it will withdraw the notification flag,
 00184 ; whereupon we withdraw the acknowledgement flag. The ISR has exclusive
 00185 ; write-access to the notification flag. The foreground process has exclusive
 00186 ; write-access to the acknowledgement flag.
 00187
 00188 ; Have we already acknowledged a notification?
0039 18A2 00189 btfsc InterprocessFlags,TimerAck
003A 2841 00190 goto Acknowledged ; Yes.
003B 1C22 00191 btfss InterprocessFlags,TimerInt ; No. Is there a new one?
003C 2839 00192 goto loop ; No. Keep waiting.
003D 00193 NextHalfSecond ; Yes
003D 14A2 00194 bsf InterprocessFlags,TimerAck ; Acknowledge it.
003E 3001 00195 movlw LightMask ; This puts a 1 in the Light bit of the W register
003F 0685 00196 xorwf PORTA,LightMask ; Toggle Light bit of Port A.
0040 2839 00197 goto loop ; and resume waiting.
 00198 ; We've already acknowledged the most recent notification.
 00199 ; We're waiting for the notification to be withdrawn by the ISR.
0041 00200 Acknowledged
0041 1822 00201 btfsc InterprocessFlags,TimerInt ; Is an interrupt notification outstanding?
0042 2839 00202 goto loop ; Yes. Wait until it's withdrawn.
0043 10A2 00203 bcf InterprocessFlags,TimerAck ; Not any more. Withdraw the acknowledgement.

MPASM 02.70 Released INTERRUP.ASM 2-12-2002 16:37:38 PAGE 5

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

0044 2839 00204 goto loop ; Wait indefinitely. The only useful processing will
 00205 ; occur if there is an interrupt.
 00206 ; ***
 00207
 00208 ; Module Name: InitPulseCount
 00209 ; Description: Initialize the two-byte counter for counting timer interrupts
 00210 ; a 16-bit result.
 00211 ; Input: None
 00212 ; Corrupts: W register
 00213 ; STATUS register
 00214 ; Output: PulseCount0 - LSB of the counter
 00215 ; PulseCount1 - MSB of the counter
0045 00216 InitPulseCount
0045 30F3 00217 movlw PulseCount0Init ;Load the LSB of the counter
0046 00A3 00218 movwf PulseCount0
0047 3001 00219 movlw PulseCount1Init ;Load the MSB of the counter
0048 00A4 00220 movwf PulseCount1
0049 0008 00221 return
 00222
 00223 ; Module Name: CountTimer2Int
 00224 ; Description: Decrement the two-byte counter. Set the Z bit if the result is 0.
 00225 ; Input: None
 00226 ; Corrupts: W register
 00227 ; STATUS register
 00228 ; Output: STATUS(Z) = 1 if the result is 0
 00229 ; 0 otherwise
004A 00230 CountTimer2Int
004A 0823 00231 movf PulseCount0,W ; Is the LSB 0?
004B 1903 00232 btfsc STATUS,Z
004C 2850 00233 goto CountTimer2IntBorrow0 ; Yes. Check the MSB.
004D 03A3 00234 decf PulseCount0,F ; No. Decrement it.
004E 1103 00235 bcf STATUS,Z ; Signal a non-zero count.
004F 0008 00236 return
0050 00237 CountTimer2IntBorrow0
0050 0824 00238 movf PulseCount1,W ; Is the MSB 0?
0051 1903 00239 btfsc STATUS,Z
0052 2858 00240 goto CountTimer2IntBorrow1 ; Yes.
0053 03A4 00241 decf PulseCount1,F
0054 30FF 00242 movlw D'255'
0055 00A3 00243 movwf PulseCount0
0056 1103 00244 bcf STATUS,Z ; Signal a non-zero count.
0057 0008 00245 return
0058 00246 CountTimer2IntBorrow1
0058 2045 00247 call InitPulseCount ; Re-initialize the counter.
0059 1503 00248 bsf STATUS,Z ; Signal a zero count.
005A 0008 00249 return
 00250
 00251 END ; directive 'end of program'

MPASM 02.70 Released INTERRUP.ASM 2-12-2002 16:37:38 PAGE 6

SYMBOL TABLE
 LABEL VALUE

ACKDT 00000005
ACKEN 00000004
ACKSTAT 00000006
ADCON0 0000001F
ADCON1 0000009F
ADCS0 00000006
ADCS1 00000007
ADDEN 00000003
ADFM 00000007
ADIE 00000006
ADIF 00000006
ADON 00000000
ADRESH 0000001E
ADRESL 0000009E
Acknowledged 00000041
BCLIE 00000003
BCLIF 00000003
BF 00000000
BRGH 00000002
C 00000000
CCP1CON 00000017
CCP1IE 00000002
CCP1IF 00000002
CCP1M0 00000000
CCP1M1 00000001
CCP1M2 00000002
CCP1M3 00000003
CCP1X 00000005
CCP1Y 00000004
CCP2CON 0000001D
CCP2IE 00000000
CCP2IF 00000000
CCP2M0 00000000
CCP2M1 00000001
CCP2M2 00000002
CCP2M3 00000003
CCP2X 00000005
CCP2Y 00000004
CCPR1H 00000016
CCPR1L 00000015
CCPR2H 0000001C
CCPR2L 0000001B
CHS0 00000003
CHS1 00000004
CHS2 00000005
CKE 00000006
CKP 00000004
CREN 00000004
CSRC 00000007
CountTimer2Int 0000004A
CountTimer2IntBorrow0 00000050
CountTimer2IntBorrow1 00000058
D 00000005

MPASM 02.70 Released INTERRUP.ASM 2-12-2002 16:37:38 PAGE 7

SYMBOL TABLE
 LABEL VALUE

DATA_ADDRESS 00000005
DC 00000001
D_A 00000005
EEADR 0000010D
EEADRH 0000010F
EECON1 0000018C
EECON2 0000018D
EEDATA 0000010C
EEDATH 0000010E
EEIE 00000004
EEIF 00000004
EEPGD 00000007
F 00000001
FERR 00000002
FSR 00000004
GCEN 00000007
GIE 00000007
GO 00000002
GO_DONE 00000002
I2C_DATA 00000005
I2C_READ 00000002
I2C_START 00000003
I2C_STOP 00000004
IBF 00000007
IBOV 00000005
INDF 00000000
INTCON 0000000B
INTE 00000004
INTEDG 00000006
INTF 00000001
IRP 00000007
InitPulseCount 00000045
InterprocessFlags 00000022
Light 00000000
LightMask 00000001
NOT_A 00000005
NOT_ADDRESS 00000005
NOT_BO 00000000
NOT_BOR 00000000
NOT_DONE 00000002
NOT_PD 00000003
NOT_POR 00000001
NOT_RBPU 00000007
NOT_RC8 00000006
NOT_T1SYNC 00000002
NOT_TO 00000004
NOT_TX8 00000006
NOT_W 00000002
NOT_WRITE 00000002
NextHalfSecond 0000003D
OBF 00000006
OERR 00000001
OPTION_REG 00000081

MPASM 02.70 Released INTERRUP.ASM 2-12-2002 16:37:38 PAGE 8

SYMBOL TABLE
 LABEL VALUE

P 00000004
PCFG0 00000000
PCFG1 00000001
PCFG2 00000002
PCFG3 00000003
PCL 00000002
PCLATH 0000000A
PCON 0000008E
PEIE 00000006
PEN 00000002
PIE1 0000008C
PIE2 0000008D
PIR1 0000000C
PIR2 0000000D
PORTA 00000005
PORTB 00000006
PORTC 00000007
PORTD 00000008
PORTE 00000009
PR2 00000092
PS0 00000000
PS1 00000001
PS2 00000002
PSA 00000003
PSPIE 00000007
PSPIF 00000007
PSPMODE 00000004
PulseCount0 00000023
PulseCount0Init 000000F3
PulseCount1 00000024
PulseCount1Init 00000001
R 00000002
RBIE 00000003
RBIF 00000000
RC8_9 00000006
RC9 00000006
RCD8 00000000
RCEN 00000003
RCIE 00000005
RCIF 00000005
RCREG 0000001A
RCSTA 00000018
RD 00000000
READ_WRITE 00000002
RP0 00000005
RP1 00000006
RSEN 00000001
RX9 00000006
RX9D 00000000
R_W 00000002
S 00000003
SEN 00000000
SMP 00000007

MPASM 02.70 Released INTERRUP.ASM 2-12-2002 16:37:38 PAGE 9

SYMBOL TABLE
 LABEL VALUE

SPBRG 00000099
SPEN 00000007
SREN 00000005
SSPADD 00000093
SSPBUF 00000013
SSPCON 00000014
SSPCON2 00000091
SSPEN 00000005
SSPIE 00000003
SSPIF 00000003
SSPM0 00000000
SSPM1 00000001
SSPM2 00000002
SSPM3 00000003
SSPOV 00000006
SSPSTAT 00000094
STATUS 00000003
SYNC 00000004
T0CS 00000005
T0IE 00000005
T0IF 00000002
T0SE 00000004
T1CKPS0 00000004
T1CKPS1 00000005
T1CON 00000010
T1INSYNC 00000002
T1OSCEN 00000003
T1SYNC 00000002
T2CKPS0 00000000
T2CKPS1 00000001
T2CON 00000012
TMR0 00000001
TMR1CS 00000001
TMR1H 0000000F
TMR1IE 00000000
TMR1IF 00000000
TMR1L 0000000E
TMR1ON 00000000
TMR2 00000011
TMR2IE 00000001
TMR2IF 00000001
TMR2ON 00000002
TOUTPS0 00000003
TOUTPS1 00000004
TOUTPS2 00000005
TOUTPS3 00000006
TRISA 00000085
TRISB 00000086
TRISC 00000087
TRISD 00000088
TRISE 00000089
TRISE0 00000000
TRISE1 00000001

MPASM 02.70 Released INTERRUP.ASM 2-12-2002 16:37:38 PAGE 10

SYMBOL TABLE
 LABEL VALUE

TRISE2 00000002
TRMT 00000001
TX8_9 00000006
TX9 00000006
TX9D 00000000
TXD8 00000000
TXEN 00000005
TXIE 00000004
TXIF 00000004
TXREG 00000019
TXSTA 00000098
Timer2 0000000F
Timer2AckReceived 0000001B
Timer2CheckAck 00000019
Timer2DecrementCount 00000011
Timer2EndISR 00000017
TimerAck 00000001
TimerInt 00000000
UA 00000001
W 00000000
WCOL 00000007
WR 00000001
WREN 00000002
WRERR 00000003
Z 00000002
_BODEN_OFF 00003FBF
_BODEN_ON 00003FFF
_CPD_OFF 00003FFF
_CPD_ON 00003EFF
_CP_ALL 00000FCF
_CP_HALF 00001FDF
_CP_OFF 00003FFF
_CP_UPPER_256 00002FEF
_DEBUG_OFF 00003FFF
_DEBUG_ON 000037FF
_HS_OSC 00003FFE
_LP_OSC 00003FFC
_LVP_OFF 00003F7F
_LVP_ON 00003FFF
_PWRTE_OFF 00003FFF
_PWRTE_ON 00003FF7
_RC_OSC 00003FFF
_WDT_OFF 00003FFB
_WDT_ON 00003FFF
_WRT_ENABLE_OFF 00003DFF
_WRT_ENABLE_ON 00003FFF
_XT_OSC 00003FFD
__16F874 00000001
loop 00000039
main 0000001D
status_temp 00000021
w_temp 00000020

MPASM 02.70 Released INTERRUP.ASM 2-12-2002 16:37:38 PAGE 11

MEMORY USAGE MAP ('X' = Used, '-' = Unused)

0000 : XX--XXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0040 : XXXXXXXXXXXXXXXX XXXXXXXXXXX----- ---------------- ----------------
2000 : -------X-------- ---------------- ---------------- ----------------

All other memory blocks unused.

Program Memory Words Used: 89
Program Memory Words Free: 4007

Errors : 0
Warnings : 0 reported, 0 suppressed
Messages : 5 reported, 0 suppressed

