
EE361 Microcomputer-Based Digital Design

Fall 2008

Lab 1

Introduction to the PIC16F884

This lab has two parts:

1. Debug an elementary program, use a simulator to test it, download it into
a PIC16F884 chip, and use the oscilloscope to record the output waveform
and certain relevant measurements.

2. Modify the program to make it count from 0 to 25decimal, debug it, simulate
its operation, download it into a PIC16F884 chip, and use the oscilloscope
to record the output waveform and certain relevant measurements.

Part I: An elementary program is given in toggle.asm, shown below in
Listing 1 on page 6 and also posted on the course web site. Use
Microchip’s Integrated Development Environment (IDE), known as
MPLAB, to create a project for this program by following these steps:

(a) Save file toggle.asm in a suitable folder (directory).

(b) Create a new project using the menu choices Project|Project Wiz-
ard. . . .

(c) In the Project Wizard dialog

i. select Next,
ii. specify the PIC16F884 device and choose Next,
iii. specify the Microchip MPASM Toolsuite under Active Tool-

suite, the MPASM assembler under Toolsuite Contents, and
the location of the executable program MPASMWIN.exe for
Location.1 Then choose Next.

iv. Give the project a suitable Project Name (Lab1Toggle, for
example) and Project Directory. The same directory where
you have already stored toggle.asm is suitable but not nec-
essary.

v. Find your copy of toggle.asm in the window on the left
and Add it to the window on the right. If your program is
not in the same directory as the project you are creating,

1The default location is /Program Files/Microchip/MPASM Suite/MPAsmWin.exe.

1

then check the box beside the file name to cause a copy to
be saved in your project directory. Choose Next.

vi. Choose Finish.
(d) You will see a project window with entries for Source Files,

Header Files, and so on. (If the project window is not visi-
ble, use the View menu item to display it.) The file toggle.asm
should be listed under the Source Files. You can open it in
MPLAB by double-clicking on its name in the list.

(e) Study the assembly language code.
• Everything appearing after a semicolon on a line is a com-

ment. Use comments on individual statements to clarify the
purpose of your instructions, not just to state what they do.
Refer to the microprocessor program documentation stan-
dards on the web site at URL

http://www.usna.edu/EE/ee361/Labs

for further details.
• Labels begin in the left margin. The label actually refers to

the next instruction encountered, whether it appears on the
same line or on a subsequent line.

• The first symbol appearing on a line and that is not actually
positioned at the left margin is assumed to be either an
assembly language instruction or a directive to tailor the
operation of the assembler.

• The ensuing symbols, if any, are either one or two arguments
to the instruction or arguments to the assembler directive.

• Line 31 refers to file p16f884.inc. This file contains state-
ments relating predefined register names and bit names to
their equivalent numerical addresses and bit positions. It is
useful to examine the contents of the file, both to see how
to spell the predefined names in a program and to see how
the equivalence is established. 2

• The bits in each of the two configuration words for the pro-
cessor are specified in lines 32 through 62. See chapter 14
of the PIC16F884 Data Sheet for details.

• Programs in microcontrollers can be divided into four sec-
tions:
– Symbol definitions and data storage allocation. The

p16f884.inc file specifies some of the definitions used
in toggle.asm. Look in the MPLAB help file for the
assembler (MPASM) to see the permissible formats for
specifying constants of various radices (bases). You can
access the help file using Help|Topics. . . and selecting
MPASM Assembler under the heading Language Tools.

2The default location for the include file is /Program Files/Microchip/MPASM Suite.

2

http://www.usna.edu/EE/ee361/Labs

– Initializations,
– Interrupt routines,
– A control loop.

In the program in file toggle.asm no use of interrupts is
made, so that section has been omitted. If you look at
the Program Template posted on the course web site at
http://www.usna.edu/EE/ee361/Labs/ you can see what
the extra code supporting interrupts looks like. We’ll use
interrupts later in the course.

(f) Some registers need to be initialized in order to make it possible
to use Port A. These are specified where Port A is described
in the PIC16F884 Data Sheet. Once these registers have been
initialized, an exclusive-or instruction is executed repeatedly to
make bit 0 of Port A toggle on and off, over and over again,
indefinitely.

(g) Assemble the program using Project|Build All. There are some
syntax errors in toggle.asm and the assembler will provide
warnings to complain about them. Figure out what is wrong and
fix them. You can quickly get to the erroneous line by double-
clicking on the error message. You will also get some warnings
concerning operands that are not in bank 0. The assembler is
smart enough to know that you should have manipulated the
RP1:RP0 bits before you touch registers in other banks, but it
is not smart enough to know whether you have done so correctly
or not. Decide whether these warnings can be ignored or not.
If not, fix the problem and continue trying to assemble the pro-
gram until you do not get any more errors. (The assembler can
tell whether a register is in Bank 0 or not, but it cannot tell
whether you have selected the correct bank for such a register.)

(h) Activate the simulator by selecting Debugger|Select Tool|MPLAB
SIM.

(i) Display the special function registers by selecting View|Special
Function Registers.

(j) Step through the program one instruction at a time by repeat-
edly selecting Debugger|Step Into. Each time an instruction ex-
ecutes, changes to the contents of the special function registers
appears in red. Make sure you understand the reason for every
change that you see by reading in the PIC16F884 Data Sheet
the details for each instruction executed. If you ignore this di-
rection, you will have a hard time with the entire rest of the
course.

(k) When your understanding is complete, select Debugger|Animate
to see the debugger go through the instructions repeatedly.

3

http://www.usna.edu/EE/ee361/Labs/

PIC16F884
1U

5 V
DDV

DDV SSV

4PORTA
6

32 31

MCLR
1

5 V
DDV

RESET

1211

DDV SSV

x

1

100 nF

C

1

1 k

R

Ω

Figure 1: Schematic for a circuit to go with the program in Listing 1 on page
6. The pull-up resistor R1 can be bigger than 1 kΩ, if desired.

(l) Download your program into a PIC16F884 chip by taking a
copy of the file toggle.hex to one of the computers that has a
PICSTART Plus development programmer attached to it. Use
MPLAB to read in the hex file by selecting File|Import. . . . In
the Open dialog, find your hex file and Open it. A hex file is
really just an encoded version that is useful to the PICSTART
Plus programming device.
You can see the machine code from your program in a somewhat
more comprehensible form by selecting View|Program Memory.
At the bottom of the Program Memory window you can specify
any of three different formats in which to view your program.
The symbolic format is probably easiest to interpret. Store the
machine code into a PIC16F884 chip by locking the chip in the
PICSTART Plus programmer with the built-in zero-insertion-
force socket.
Warning: Do not touch the pins of the chip with your fingers.

4

Violating this warning may destroy the chip internally without
giving any clear indication that it is now ruined.
When the chip is secured in place, select Programmer|Select
Programmer|PICSTART Plus. Then select Programmer|Program.

(m) Remove your PIC16F884 chip from the programmer and insert
it into your own protoboard. While you could plug the chip into
the board directly, you are less likely to damage the chip if you
put a zero-insertion-force socket into your protoboard first. It
should be wired up like the chip in Figure 1 on the previous
page, which also exemplifies the way you should draw your own
schematic diagrams.
Connect output x to one of the digital inputs of the oscilloscope.
Measure the duty cycle and the period of the waveform using
two methods:

• manual adjustments of the cursors and
• automatic measurements.

Capture the waveform for inclusion in your report. Make sure
that you label the input with the letter “x” right on the oscillo-
scope screen.

Part II: Modify the program toggle.asm to make it count from 0 to 25decimal

repeatedly and output the five-bit result to Port A. Debug the pro-
gram, simulate its operation, download it into a PIC16F884 chip, and
connect it in a suitable circuit whose schematic should be a part of
your report. Use the oscilloscope to record the output waveform, la-
beling each signal clearly. The signals are X4 (the most significant
bit) through X0 (the least significant bit.) Measure the time it takes
to go through the complete cycle. Also measure the time to change
from one value to the next. If the time to change from 25 back to 0
is different, measure and report it, too.

5

Listing 1: Module toggle.asm

1 ; ∗∗∗
2 ; This program fo r the PIC16F884 s o l v e s the f o l l ow i n g

program
3 ; s p e c i f i c a t i o n :
4 ; 1 . Have the proces sor t o g g l e Port A <4> r e p ea t e d l y .
5 ; ∗∗∗
6 ;
7 ; Filename : Toggle . asm
8 ; Date : 21 August 2008
9 ; F i l e Version : 1

10 ;
11 ; Author : CDR Char les B. Cameron , USN
12 ; Company : United S t a t e s Naval Academy
13 ;
14 ;
15 ; ∗∗∗
16 ;
17 ; F i l e s r e qu i r ed
18 ;
19 ; p16f884 . inc
20 ;
21 ; ∗∗∗
22
23 ; Notes :
24 ; This program i n i t i a l i z e s PORT A <4> to 0 . I t then en t e r s
25 ; a p e rp e t ua l loop , t o g g l i n g the va lue o f A<4> each time .
26 ; ∗∗∗
27
28
29
30 l i s t p=16f884 ; l i s t d i r e c t i v e to d e f i n e

proces sor
31 #include <p16f884 . inc> ; processor−s p e c i f i c

v a r i a b l e
32 ; d e f i n i t i o n s
33
34 ; The f o l l ow i n g sequence determines the va lue o f the

con f i g u r a t i on
35 ; word and then uses i t to s e t the c on f i g u r a t i on . Add i t i ona l

op t i ons
36 ; are s p e c i f i e d in each s u c c e s s i v e ” s e t ” d i r e c t i v e . D i f f e r e n t

op t i ons
37 ; can be s p e c i f i e d as necessary , prov ided you know what they

do .
38 ConfigurationWord set DEBUG OFF
39 ConfigurationWord set ConfigurationWord & LVP OFF
40 ConfigurationWord set ConfigurationWord & FCMEN OFF

6

41 ConfigurationWord set ConfigurationWord & IESO OFF
42 ConfigurationWord set ConfigurationWord & BOR OFF
43 ConfigurationWord set ConfigurationWord & CPD OFF
44 ConfigurationWord set ConfigurationWord & CP OFF
45 ConfigurationWord set ConfigurationWord & MCLRE ON
46 ConfigurationWord set ConfigurationWord & PWRTE OFF
47 ConfigurationWord set ConfigurationWord & WDT OFF
48 ConfigurationWord set ConfigurationWord & INTRC OSC NOCLKOUT
49
50 ; The ’ CONFIG ’ d i r e c t i v e i s used to embed con f i g u r a t i on data

wi th in
51 ; a . asm f i l e . The l a b e l s used in each ” s e t ” d i r e c t i v e are

l o c a t e d
52 ; in the r e s p e c t i v e p16f884 . inc f i l e . See the data shee t f o r
53 ; a d d i t i o n a l in format ion on the meaning o f the b i t s w i th in the
54 ; f i g u r a t i o n word . The PIC16F884 has two con f i g u r a t i on words ,
55 ; so an address must be s p e c i f i e d in the CONFIG d i r e c t i v e .
56 ; The f i r s t i s a t address 0x2007 .
57 CONFIG 0x2007 , ConfigurationWord
58
59 ; The second con f i g u r a t i on word i s a t address 0x2008 .
60 ConfigurationWord set WRT OFF
61 ConfigurationWord set ConfigurationWord & BOR40V
62 CONFIG 0x2008 , ConfigurationWord
63
64 ; ∗∗∗∗∗ VARIABLE DEFINITIONS
65 ; The f i r s t two v a r i a b l e s de f ined s p e c i f y s t o rage l o c a t i o n s

used f o r
66 ; c on t e x t sw i t ch ing when i n t e r r u p t s occur . The l o c a t i o n s

s p e c i f i e d are
67 ; in a par t o f memory t ha t i s p re sen t no matter which memory

bank i s
68 ; c u r r en t l y in use .
69 w temp EQU 0x70 ; v a r i a b l e used f o r sav ing W
70 status temp EQU 0x71 ; v a r i a b l e used f o r sav ing

STATUS
71
72 ; Program s to rage areas t ha t do not need to be a v a i l a b l e in

a l l banks
73 ; shou ld be s p e c i f i e d next .
74
75 ; B i t s w i th in PORTA
76 ToggleBit equ B’00010000 ’ ; Des ignates b i t 4 o f Port A.
77 TRISAValue equ B’11101111 ’ ; Make b i t 4 o f PORT A an

output .
78 ; Leave the r e s t as input b i t s

.
79 ANSELInitValue equ B’00000000 ’ ; Make a l l PORT A b i t s d i g i t a l

, not analog
80

7

81 ;
∗∗

82 ORG 0x000 ; Processor r e s e t v e c t o r
83 c l r f PCLATH ; Ensure page b i t s are c l e a r ed
84
85 i n i t i a l i z e
86
87 ; ∗∗∗
88 ; I n i t i a l i z e r e g i s t e r s as r e qu i r ed
89 ; ∗∗∗
90
91 bcf STATUS,RP1 ; S e l e c t Bank 0 because Port A

i s in Bank 0
92 bcf STATUS,RP0
93 c l r f PORTA ; Clear Port A
94
95 bsf STATUS,RP1 ; S e l e c t Bank 3 because ANSEL

i s in i t
96 bsf STATUS,RP0
97 movlw ANSELInitValue ; I n i t i a l i z e the ANSEL

r e g i s t e r to con t r o l
98 movwf ANSEL ; which Port A pins use analog

inpu t s .
99

100 bcf STATUS,RP1 ; S e l e c t Bank 1 because TRISA
i s in i t

101 bsf STATUS,RP0
102 movlw TRISAValue ; I n i t i a l i z e d i r e c t i o n p ins

f o r Port A us ing TRISA.
103 movwf TRISA
104
105 bcf STATUS,RP1 ; S e l e c t Bank 0 because PORTA

i s in i t
106 bcf STATUS,RP0
107
108 ; main ()
109 ; This i s the main program , as i t i s known in the C

Programming Language .
110 ; I t does on ly one t h ing : t o g g l e PORTA<t o g g l e b i t >
111
112 EndlessControlLoop
113 movlw ToggleBit
114 xorw PORTA, f
115 goto EndlessControlLoop ; Repeat ad

in f i n i t um
116 ; ∗∗∗
117
118 END ; d i r e c t i v e ’ end o f program ’

8

