
Programming in the PIC16 Family ∗

Charles B. Cameron

12 September 2008

Contents

1 Introduction 3

2 Assembly Language Source Programs 4

3 C-Language Control Structures 7

3.1 Assignment . 7
3.2 Conditional Statements . 9
3.3 Equality (a = b) . 10
3.4 Inequality (a 6= b) . 10
3.5 Strictly Less Than (a < b) . 10
3.6 Less Than or Equal To (a ≤ b) 10
3.7 Strictly Greater Than (a > b) . 11
3.8 Greater Than or Equal To (a ≥ b) 11
3.9 If . . . else . 12
3.10 Do . . . while . 13
3.11 While . 14
3.12 For . 15
3.13 Table Look-up . 16
3.14 Switch Statement . 17

∗Course notes for EE361 Microprocessor-based Digital Design

1

List of Figures

1 Generating a machine program 3

2

Source
<name>.asm

Symbol
definitions
<name>.inc

Assembler
(MPASM)

ASCII version
<name>.hex

Listing
<name>.lst

PICSTART
Programming

Device
PIC16F884 Flash
Program Memory

Figure 1: Generating a machine program. A source program with extension
.asm, written in the PIC16F884 assembly language, is examined by the assem-
bler, which also examines any included files, with extension .inc, specified by
the source program. The result is a file of ASCII characters that represent
the hexadecimal values of the machine program. The PICSTART Plus pro-
grammer converts them into the corresponding pattern of zeroes and ones and
stores them serially in the flash memory of a processor. The processor can then
be inserted into a suitable circuit where it executes the stored programming,
gathering inputs and generating outputs as specified by the proram.

1 Introduction

Figure 1 illustrates the steps required in creating a program for execution by
a PIC16F884 microcontroller when the program is written in PIC16 assembly
language. The assembly language program is written as a text file with ASCII
characters and saved with the file extension .asm. The file may specify the
inclusion of other files having extension .inc. These are most commonly used
to hold definitions of symbols used by the programmer in writing the program.
An example of such a .inc file is the file P16F884.inc, normally found in the
C:/Program Files/Microchip/MPASM Suite directory.

The program and the included files can be created using any text editor.
However, Microchip provides a text editor with its free development environ-
ment, MPLAB, that is well-suited to the task. This editor recognizes the key
words that correspond to the 35 instructions of the PIC16 family of processors
and highlights them in a special color. In addition, the MPLAB program makes
it easy to perform the next step shown in Figure 1: the assembly of the pro-
gram by the MPASM assembler. The assembler scans the assembly language
program and its included files and converts them into equivalent machine code.
The output of the assembler is another text file with extension .hex. However,
its contents consist mostly of the 16 hexadecimal characters 0 . . . 9A . . . F.

The MPLAB program also permits this file to be sent to a device called the
PICSTART Plus programmer. It converts the .hex file into a serial string of
ones and zeros and loads them into the flash memory of the processor itself.

3

Once the processor’s memory contains the program, it can be placed within
a suitable circuit. When power is applied, the stored program starts to execute,
processing its inputs and generating outputs as specified by the stored program
itself.

In this document we focus on the assembly language source program, the
.asm file.

2 Assembly Language Source Programs

The lines of an assembly language source program are of essentially two kinds:

• Instructions that get translated by the assembler into machine-language
equivalents for later execution by the PIC16F884 microntroller and

• Directives that tailor the operation of the assembler without generating
any machine-language equivalents.

The PIC16F88X Data Sheet1 describes the machine-language instructions
and their assembly-language equivalents in detail. However, it is mostly silent
about assembler directives. Since both are important, we will discuss them both
here but we will be careful to distinguish between them.

Anything appearing on a program line to the right of a semicolon (;) is
disregarded by the assembler because it is a comment. It is there to make it
easier for people to read the program. Use them to explain why you are doing
something, not just as a restatement of what the adjacent instruction does.

Much use is made in assembly-language programs of labels. A label can be
recognized by the assembler because it is placed in the left margin of the program
source file. If it is not in the left margin then it must be something else, thinks
the assembler. A label is just a symbolic name for a number. The number might
refer to a program memory address. It might be a piece of data. It might even
be an ASCII character, which of course is really a seven-bit number. What it
is in fact is defined by the manner in which it is used and by what is in the
programmer’s mind when he thinks of it. The assembler only thinks of it as a
name for a number.

If a symbol is not a label, then it appears anywhere but at the left margin.
If it is one of the 35 instructions described in the PIC16F88X Data Sheet then
the assembler will recognize it and try to generate a machine instruction from
the line where the instruction appears. If it is not one of the 35 instructions,
then the assembler decides whether it is one of the numerous directives it knows
about. If it is neither of these, then the assembler gives up and issues an error
message.

If the symbol is one of the 35 valid instructions then it is one of three
kinds, depending on how many operands it needs: one, two, or three. The
number of operands is specified in the PIC16F88X Data Sheet for each of the

1 References to the PIC16F88X Data Sheet are actually references to the

PIC16F882/883/884/886/887 Data Sheet, which is its full title.

4

35 instructions. For example, the andwf instruction requires two operands: f

and d. Some instructions require no operands at all. One kind of instruction
requires just one operand, f. Another kind requires just k. And another kind
requires two operands: f and b.

To understand these requires knowing what these operands really are. Table
15-2 on page 230 of the PIC16F88X Data Sheet has a column showing the
14-bit pattern generated by the assembler for each of the 35 different kinds of
instruction. The number of times the letters d, f , k, and b appear in the 14-bit
pattern tells you how many bits the assembler requires from you before it can
fill in the required bits. For example, the BTFSS instruction needs three bits for
the b field and seven bits for the f field. To do this, the assembler reads the
operands and tries to squeeze them into the available space.

Of course, if you have numeric operands, your code will be all but unreadable.
You will use symbolic names in almost all cases. So the assembler will look up
the value of the symbol you have used as an operand and squeeze that into the
available space.

Here is a program fragment that illustrates this process.

X equ H’4A’ ; X = H’4A’ = D’58 ’
Y equ D’301 ’ ; Y = D’301 ’ = H’12D’
Z equ H’22 ’ ; Locat ion 22 i s s c ra t ch space
STATUS equ H’03 ’ ; STATUS r e g i s t e r has address 3 .
W equ 0 ; W r e g i s t e r s p e c i f i e r
F equ 1 ; F r e g i s t e r s p e c f i e r
RP1 equ 6 ; RP1 b i t in the STATUS r e g i s t e r
RP0 equ 5 ; RP0 b i t in the STATUS r e g i s t e r

. . .
bcf STATUS,RP1 ; Set bank 1
bsf STATUS,RP0
movlw X ; Load X in to W
addlw Y ; Add Y to i t
movwf Z ; Put the r e s u l t in Z

The five equ directives tell the assembler to associate symbols with numeric
values. For example, X = 5810 = 4A16.

The first bcf instruction needs a seven-bit f-field and a three-bit b-field. The
assembler uses the seven bits 000 0011 for the f-field because these are the least
significant seven bits of 0316. It uses the three bits 110 for the b-field because
these are the least significant three bits of 616 = 01102.

Similarly, the second bcf instruction uses 000 0011 for the f-field and 101
for the b-field.

Taken together, these two instructions cause the RP1 and RP0 bits of the
STATUS register to be set to the value 012. When direct addressing is used, this
means that bank 1 is in use. All data addresses require nine bits. The remaining
seven bits will come from the instruction that is using direct addressing.

5

The movlw instruction needs eight bits for the k-field. It sees that the symbol
X has the value 4A16 = 0100 10102 and so these are the eight bits it uses. Using
an eight-bit constant that has been stored in an instruction is known as imme-
diate addressing: the data are immediately available, right in the instruction.

The addlw instruction contains a surprise. The assembler sees that the sym-
bol Y has the value 30110 = 12D16 = 0001 0010 11012 but extracts only the
least significant eight bits: 0010 11012 = 2D16 = 4510. When the processor exe-
cutes the instruction, it knows nothing of the discarded bits. So the arithmetic
operation performed is not 58 + 301 = 359. Rather, it is 58 + 45 = 103. The
problem is that the programmer tried to cram a nine-bit value into an eight-bit
field and this is impossible.

The final instruction is movwf. It requires a seven-bit f-field. Symbol Z has
the value 2216. Reference to Figure 2-4 in the PIC16F88X Data Sheet shows
that this is one of the general purpose registers in bank 0. You may use these
registers for any purpose. Here, the location is being set aside to hold the
value of a variable Z. Note that the symbols X and Y are values associated
with variables X and Y whereas the symbol Z is an address associated with
memory where the value of variable Z will be stored. Because the values of X

and Y are fixed in program memory, they are not changeable except when the
program is written, so they are not really variables at all in the usual sense.
(The only way to distinguish between variables and constants is by context.
Byte-oriented instructions get their data from data memory using an address:
they use variables. Literal instructions get their data from the program word
itself: they use constants.

Some of the instructions cause the values of the Z, DC, and C bits in the
STATUS register to be determined. Table 15-2 in the PIC16F88X Data Sheet
shows these instructions. If a status bit is not mentioned, then its value is
not altered by the instruction. This means that a program might not have to
examine a status bit immediately after it has been determined, as long as no
intervening instruction alters it.

The arithmetic and logic unit (ALU) computes four things: an eight-bit
output and the three status bits. The only decisions that can be based on
the results of an ALU operation are those based on the three status bits. For
example, if the eight-bit output of the ALU is 000000002, then the Z bit will
be set to the value 1; otherwise it will be reset to the value 0. What is more,
this determination will only occur in the case of instructions that determine Z,
such as ADDWF and ANDWF. The DC and C bits are only determined by the two
addition instructions and the two subtraction instructions.

Any decision that the program needs to make based on the output of the
ALU has to be based somehow on one or more of the three status bits. So a
program cannot decide to do something if, say, the ALU outputs the value 73.
But it can subtract 73 from the output of the ALU, test the answer to see if it
is 0, and do different things depending on whether it is 0 or not.

6

3 C-Language Control Structures

After having struggled through a course to learn the C or C++ language, stu-
dents have been exposed to a variety of techniques to put structure into their
programs. They have learned how to use for, do, while, and switch state-
ments, for example, and they know how to use simple data structures like one-
dimensional arrays (vectors).

Upon encountering assembly language programming for the first time, they
often see it as an entirely new discipline and set aside all the structured pro-
gramming techniques they knew they had to use with higher level languages.

We now consider how to relate the way one might program a task in C or
C++ and the equivalent code in the PIC16 family of microprocessors.

In each section, we present a fragment of code from the C programming
language (a subset of C++) and an equivalent fragment of PIC16 assembly
language code.

3.1 Assignment

In the C programming language, an example of an assignment is

x = 35 ;

For numbers that are not too large, this works very well in C. In many mod-
ern machines, C treats signed and unsigned integers as 32-bit numbers. In
the PIC16 family, registers only have eight bits, not 32. Therefore it is much
more common to run afoul of the processor’s limitations with PIC16 assembly
language programming than it is in C.

This particular assignment can be translated into PIC16 assembly language
very easily:

x i n i t equ D’35 ’ ; I n i t i a l va lue f o r x
x equ H’22 ’ ; A memory l o c a t i o n f o r x
. . .

movlw x i n i t ; Re t r i eve x ’ s i n i t i a l va lue
movwf x ; S tore the va lue in x ’ s l o c a t i o n

(Note that a decimal value such as 27 can be specified as a string like this: D’27’).
A hexadecimal number such as 2A16 can be specified with a similar string, H’2A’.
A binary string such as 0110 1101 can be specified as B’01101101’).

But what if you want to store a number that will not fit into an eight-bit
word? The usual approach is to allocate storage for as many words as needed.
For example, two eight-bit words would provide an aggregate of 16 bits, enough
for unsigned integers in the range from 0 to 216 − 1 = 65 535 or for signed
integers in the range from −32 768 to 32 767. Of course, the PIC16 does not
know how to do arithmetic on 16-bit numbers. It only knows how to do addition
and subtraction with eight-bit quantities. A sequence of additions can add this
capability to the PIC16.

7

Suppose, for example, that we want to add the 16-bit signed number x =
11 000 to the 16-bit signed number y = −12 000 to get z = x + y. Converting
these numbers to hexadecimal makes it clear that x = 2AF816 and y =D12016

when they are both expressed in the two’s-complement system. We could allo-
cate eight-bit storage for x0 and store 2A16 in the location for x1 and F816 in
the location for x0. Similarly, we could store D116 in the location for y1 and
2016 in the location for y0.

To perform the required sum, we would need to do the following, all of which
can be done by the PIC16:

1. Set z1 to 0.

2. Add x0 and y0 to form z0.

3. If this resulted in a carry, increment z1.

4. Add x1 to z1.

5. If this resulted in a carry, the final result has a carry, too.

6. Add y1 to z1.

7. If this resulted in a carry, the final result has a carry, too.

8. The result is the final carry, if any, and the two bytes z1 and z0.

This is a lot for a beginning programmer to do. Here is a program that will
do it.

x1 equ H’22 ’ ; A memory l o c a t i o n f o r x1
x0 equ H’23 ’ ; A memory l o c a t i o n f o r x0
y1 equ H’24 ’ ; A memory l o c a t i o n f o r y1
y0 equ H’25 ’ ; A memory l o c a t i o n f o r y0
z1 equ H’27 ’ ; A memory l o c a t i o n f o r z1
z0 equ H’28 ’ ; A memory l o c a t i o n f o r z0
temp equ H’26 ’ ; Temporary s t o rage
STATUS equ 3
C equ 0
W equ 0
F equ 1

c l r f z1 ; Set z1 to 0
c l r f temp ; Set temp to 0
movf x0 ,W ; Get x0
addwf y0 ,W ; Add y0
movwf z0 ; S tore sum
btfsc STATUS,C ; Was the r e a carry ?
incf z1 ,F ; Yes , so increment z1
movf x1 ,W ; Get x1

8

addwf z1 ,F ; Add i t i n t o z1
btfsc STATUS,C ; Was the r e a carry ?
incf temp ,F ; Yes , record the f a c t
movf y1 ,W ; Get y1
addwf z1 ,F ; Add i t i n t o z1
btfsc STATUS,C ; Was the r e a carry ?
incf temp ,F ; Yes , record the f a c t
bcf STATUS,C ; Assume no carry
btfsc temp , 0 ; Bi t 0 o f temp i s 1

; i f t h e r e was a carry
bsf STATUS,C ; so s e t the carry b i t

For the most part, this is a straightforward implementation of the algorithm.
The extra location temp is used to hold the carry bit temporarily. This works
because there can only be one carry out of the sum entailing the most significant
byte, not two, so temp can only be either a 0 or a 1.

3.2 Conditional Statements

It is easy to evaluate certain arithmetic conditionals in the PIC16 architecture.
This section looks at arithmetic comparisons of the eight-bit values which can be
stored in PIC16 registers. It is assumed that the values are either both positive
integers or both negative integers. If this assumption is true, then the tests are
correct as shown. They do not give correct answers if the numbers compared
have opposite arithmetic signs.

In this latter case, analysis of the sign bits will reveal the relationship be-
tween the two numbers.

In each of the conditional statement subsections below, we assume that the
variables a and b have been defined as registers in the PIC16 microprocessor’s
program memory. For example, here is a way to place the decimal value 38
in the memory at address 20 hexadecimal and give that address the symbolic
name a: It entails declaring constants and reserved memory locations using the
equ directive.

a equ H’20 ’ ; Put ”a” in l o c a t i o n 0x20
avalue equ D’38 ’ ; ”a” w i l l be i n i t i a l i z e d

; to 38 (decimal)
. . .

movlw avalue
movwf a ; i n i t i a l i z e s the s t o rage

; l o c a t i o n f o r ”a”

9

3.3 Equality (a = b)

Subtracting a − b will set the zero flag Z if a = b and will reset it otherwise.

movf b ,W
subwf a ,W ; Compute a−b
btfsc STATUS,Z ; Do next i f a = b

3.4 Inequality (a 6= b)

Subtracting a − b will set the zero flag Z if a = b and will reset it otherwise.

movf b ,W
subwf a ,W ; Compute a−b
btfss STATUS,Z ; Do next i f a 6= b

3.5 Strictly Less Than (a < b)

Subtracting a− b will clear the carry flag C if a < b and will reset it otherwise.

movf b ,W
subwf a ,W
btfss STATUS,C ; Do next i f a < b

3.6 Less Than or Equal To (a ≤ b)

Subtracting b − a will clear the carry flag C if a > b and will set it otherwise.
So C will be set if a 6> b, which is equivalent to a ≤ b.

movf a ,W
subwf b ,W
btfsc STATUS,C ; Do next i f a ≤ b

10

3.7 Strictly Greater Than (a > b)

Subtracting b − a will clear the carry flag C if a > b and will set it otherwise.

movf a ,W
subwf b ,W
btfss STATUS,C ; Do next i f a > b

3.8 Greater Than or Equal To (a ≥ b)

Subtracting a − b will clear the carry flag C if b > a and will set it otherwise.
So C will be set if b 6> a, which is equivalent to b ≤ a.

movf b ,W
subwf a ,W
btfsc STATUS,C ; Do next i f a ≥ b

11

3.9 If . . . else . . .

C language construct:

i f (x == c) {
Do block 1 ;

} else {
Do block 2 ;

}

PIC16 Family equivalent:

movf x ,W ; Re t r i eve x
sublw c ; Sub t rac t : c − x

btfss STATUS,Z ; I f c = x , do Block 1
goto Block2 ; Otherwise , do Block 2

Block1 :
; Do t h i n g s p e r t a i n in g to Block 1 ’ s t a s k
. . .

goto Next ; Bypass Block 2
Block2 :

; Do t h i n g s p e r t a i n in g to Block 2 ’ s t a s k
. . .

Next :
; Block 1 and Block 2 are behind us . Do t a s k s
; which shou ld f o l l ow whichever one o f them
; was performed .

12

3.10 Do . . . while

C language construct:

do {
Block ;

} while (x >= k) ;

PIC16 Family equivalent:

Block :
; Do the t h i n g s p e r t a i n in g to Block 1 ’ s t a s k
. . .

; See i f the b l o c k shou ld be repea ted
movlw k
subwf x ,W ; Ca l cu l a t e x − k .
btfsc STATUS,C ; Skip i f k > x

goto Block ; x ≥ k , so repea t Block
Next :

; The Block o f code has been executed . Carry on .

13

3.11 While . . .

C language construct:

while (x >= k) {
Block ;

}

PIC16 Family equivalent:

StartOfBlock :
movlw k
subwf x ,W ; Ca l cu l a t e x − k

btfss STATUS,C ; x ≥ k , do Block
goto Next ; x < k , s k i p Block

Block :
; Do the t h i n g s t ha t be long in t h i s Block o f code
. . .

goto StartOfBlock
Next :

; The Block o f code i s complete . Carry on .
. . .

14

3.12 For . . .

C language construct:

for (i =0; i<n ; ++i) {
Block ;

}

PIC16 Family equivalent:

i equ H’20 ’ ; A memory l o c a t i o n f o r x1
temp equ H’21 ’ ; Temporary s t o rage
n equ H’22 ’ ; Temporary s t o rage
STATUS equ 3
C equ 0
W equ 0
F equ 1

c l r f i ; i = 0
Test :

movf n ,W ; Ca l cu l a t e i − n
subwf i ,W
btfsc STATUS,C ; i < n , do Block
goto Next ; i >= n , s k i p Block

Block :
. . .
incf i ,F
goto Test

Next :

15

3.13 Table Look-up

C language construct:

x = l i s t [i] ;

where list consists of n 8-bit characters and i is an index in the range [0, n− 1].
Care must be taken to ensure that index i not exceed n− 1. If i ≥ n, then code
beyond that last retlw instruction will be executed. Almost always, this is a
programming error.

PIC16 Family equivalent:

movf i ,W ; Put the index i in W
ca l l LookUp ; Lookup the i t h e lement
movwf x ; S tore i t in x
. . .

LookUp :
addwf PCL ; Add index to PCL
retlw L0 ; 0 th e lement o f l i s t
retlw L1 ; 1 s t e lement o f l i s t
retlw L2 ; 2nd element o f l i s t
. . .
retlw LN 1 ; (n−1) s t e lement o f l i s t

16

3.14 Switch Statement

C language construct:

switch (x) {
case n0 :

\∗ Block n0 , executed i f x = n0 ∗/
break ;

case n1 :
/∗ Block n1 , executed i f x = n1 ∗/
break ;

. . .
case nkminus1 :

/∗ Block nk−1 , executed i f x = nk−1

∗/
break ;

default :
/∗ Defau l t b lock , executed i f

x 6= nj f o r any j ∈ {0, k − 1} ∗/
}

PIC16 Family equivalent:

movf n0 ,W ; Compute x − n0

subwf x ,W
btfsc STATUS,Z ; Skip i f x 6= n0

goto Blockn0 ; Do Block n0 i f x = n0

movf n1 ,W ; Compute x − n1

subwf x ,W
btfsc STATUS,Z ; Skip x 6= n1

goto Blockn1 ; Do Block n1 i f x = n1

. . .

movf nkminus1 ,W ; Compute x − nk−1

subwf x ,W
btfsc STATUS,Z ; Skip i f x 6= nk−1

goto Blocknkminus1 ; Do Block n −−1 i f x 6= nk−1

Defau l t :
; Do whatever i s needed i f no case i s s a t i s f i e d .

. . .

goto Next
Blockn0 :

; Do the t h i n g s p e r t a i n in g to the case where
x = n0

. . .

goto Next
Blockn1 :

17

; Do the t h i n g s p e r t a i n in g to the case where
x = n1

. . .

goto Next
. . .

Blocknkminus1 :
; Do the t h i n g s p e r t a i n in g to the case where

x = nk−1

. . .

Next :
; The Switch s ta tement i s complete . Carry on .

18

	Introduction
	Assembly Language Source Programs
	C-Language Control Structures
	Assignment
	Conditional Statements
	Equality (a=b)
	Inequality (a = b)
	Strictly Less Than (a < b)
	Less Than or Equal To (a b)
	Strictly Greater Than (a > b)
	Greater Than or Equal To (a b)
	If …else …
	Do …while
	While …
	For …
	Table Look-up
	Switch Statement

