
1 PIC16F884 Timing Programs

1 de lay
2 movwf de lay count
3 de lay decrement
4 decfsz delay count ,F
5 goto de l ay cont inue
6 de lay end
7 nop ; m2 nop i n s t r u c t i o n s go here

8 . . .
9 return

10 de l ay cont inue
11 nop ; m1 nop i n s t r u c t i o n s go here

12 . . .
13 goto delay decrement

Timing Analysis: Let n be the value in the delay count register. When-
ever n > 2, the decfsz instruction in line 4 will not result in 0. It will then
take only a single instruction cycle to execute and the next instruction to
execute will be the goto instruction in line 5. After this, the m1 nop in-
structions starting in line 11 will be executed, along with the goto instruction
in line 13. This will consume 1 + 2 + m1 + 2 = 5 + m1 cycles.

This series of instructions will be repeated n − 1 times for a total of

N = (n − 1)(5 + m1)

= 5n − 5 + nm1 − m1

cycles.
When n = 1, the decfsz instruction in line 4 does finally result in a zero,

causing it to consume two instruction cycles instead of just one and causing
the m2 nop instructions beginning in line 7 to be executed, followed by the
return instruction in line 9. This series of instructions takes 2 + m2 + 2 =
m2 + 4 instruction cycles. When added to the earlier total, to the single
cycle consumed by the movwf instruction in line 2, and to the two cycles
consumed by the call instruction used to enter the subroutine in the first

1



place, we get

N = 1 + 5n − 5 + nm1 − m1 + m2 + 4 + 2

= 2 + 5n + nm1 − m1 + m2.

Performance with fXTAL = 4 MHz: Suppose fXTAL = 4 MHz, so fINST =
1 MHz and TINST = 1

fINST

= 1 µs. The time consumed by the routine, there-
fore, is

TDELAY = nTINST

= N µs

TDELAY = (2 + 5n + nm1 − m1 + m2) µs. (1)

If we call the subroutine with the value n in the W register, how can we
cause this to consume time T = (n × 10) µs?

What we want to do is set

10n = 2 + 5n + nm1 − m1 + m2

5n = m1n + m2 − m1 + 2.

This is an easy equation to solve if we choose m2 − m1 + 2 = 0:

5n = m1n − m1 + m2 + 2

= m1n

m1 = 5.

Substituting this back into (1) gives

TDELAY = (2 + 5n + nm1 − m1 + m2) µs

= (5 + m1)n − m1 + m2 + 2) µs

= (5 + 5)n) µs

= 10n µs,

as desired.
Now to get a delay of, say, 100 µs, all we need to do is place the value 10

in the W register and then call this delay routine.

2



Note that putting the number 0 into the W register will be equivalent to
specifying n = 256 because, after the first decrement of line 4, delay count
will have the value 255. The delay actually is specified as

TDELAY =

{

10n µs if n ∈ {1, 255}

2.56 ms if n = 0.

Longer delays can be achieved either by modifying the number of nop

instructions (that is, changing m1 and m2,) or by calling this subroutine
multiple times. Since doing this will introduce extra overhead not accounted
for in this analysis, the delay may not be an exact multiple of 10 µs. Calling
the subroutine one time fewer than needed and then adding some additional
delay can correct the problem if this is important.

Of course, this method ties up the processor completely while the delay
takes place and so is a completely unsuitable method to use if the processor
has other work to do while waiting. In such a case, it makes much more sense
to use interrupt processing and the PIC16F884’s built-in timer hardware.

3


	PIC16F884 Timing Programs

